Multimedia Tools and Applications

, Volume 74, Issue 16, pp 6465–6480 | Cite as

PSIM: pattern-based read simulator for RNA-seq analysis

  • Sang-min LeeEmail author
  • Haesung Tak
  • Kiejung Park
  • Hwan-Gue Cho
  • Do-Hoon LeeEmail author


Next-generation sequencing technologies (NGS) require mapping tools that are fundamental for their application. These are evaluated by the level of accuracy to be matched and read at the original location. Evaluation increases the need for a simulator to generate reads with their locations and errors, as with indel. In this paper, we propose a simulator, PSIM, that generating a set of artificial RNA segments(reads) with the expression level and errors based on a pattern-based SAM file. PSIM adopts the contour line transpose and interval section shuffle methods to generate a similar expression level. In addition, we show the similarity between a profile contour of synthesized data and a reference sequence.


RNA-seq Read simulator Bioinformatics 



This research was supported by a grant from the KRIBB Research Initiative Program.


  1. 1.
    Angly F E, Willner D, Rohwer F et al (2012) Grinder: a versatile amplicon and shotgun sequence simulator. Nucleic Acids Res 40(12):1–8CrossRefGoogle Scholar
  2. 2.
    Balzer S, Malde K, Lanzén A et al (2010) Characteristics of 454 pyrosequencing data enabling realistic simulation with flowsim. Bioinformatics 26(18):i420–i425CrossRefGoogle Scholar
  3. 3.
    Bartenhagen C, Dugas M (2013) RSVSim: an R/Bioconductor package for the simulation of structural variations. Bioinforma 29(13):1679–1681CrossRefGoogle Scholar
  4. 4.
    Choi M, Scholl U I, Ji W et al (2009) Genetic diagnosis by whole exome capture and massively parallel DNA sequencing. Bioinformatics 106(45):19096–19101Google Scholar
  5. 5.
    Döring A, Weese D, Rausch T, Reinert K (2008) SeqAn an efficient - generic C++ library for sequence analysis. BMC Bioinforma 9(1):11CrossRefGoogle Scholar
  6. 6.
    Hu X, Yuan J, Shi Y et al (2012) pIRS: profile-based Illumina pair-end reads simulator. Bioinformatics 28(11):1533–1535CrossRefGoogle Scholar
  7. 7.
    Huang W, Li L, Myers J R, Marth G T (2012) ART: a next-generation sequencing read simulator. Bioinforma 28(4):593–594CrossRefGoogle Scholar
  8. 8.
    Kim S, Jeong K, Bafna V (2013) Wessim: a whole-exome sequencing simulator based on in silico exome capture. Bioinformatics 29(8):1076–1077CrossRefGoogle Scholar
  9. 9.
    Li H, Handsaker B, Wysoker A et al (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25(16):2078–2079CrossRefGoogle Scholar
  10. 10.
    Liu L, Li Y, Li S et al (2012) Comparison of next-generation sequencing systems. J Biomed Biotechnol:2012Google Scholar
  11. 11.
    Manuel H (2010) Mason - a read simulator for second generation sequencing data, Technical Report FU, BerlinGoogle Scholar
  12. 12.
    McElroy K, Luciani F, Thomas T (2012) GemSIM: general error-model based simulator of next-generation sequencing data. BMC Genomics 13(1):1–9CrossRefGoogle Scholar
  13. 13.
    Ono Y, Asai K, Hamada M (2013) PBSIM: PacBio reads simulator? toward accurate genome assembly. Bioinforma 29(1):119–121CrossRefGoogle Scholar
  14. 14.
    Pickrell J K, Marioni J C, Pai A A et al (2010) Understanding mechanisms underlying human gene expression variation with RNA sequencing. Nat 464(7289):768–772CrossRefGoogle Scholar
  15. 15.
    Richter D C, Ott F, Auch A F et al (2008) MetaSim - a sequencing simulator for genomics and metagenomics. PLoS ONE 3(10):e3373CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringPusan National UniversityBusanKorea
  2. 2.Korea Research Institute Bioscience and Biotechnology (KRIBB)DaejeonKorea
  3. 3.Korea Institute of Ocean Science and TechnologyAnsanKorea

Personalised recommendations