Multimedia Tools and Applications

, Volume 74, Issue 4, pp 1175–1197

Combining content with user preferences for non-fiction multimedia recommendation: a study on TED lectures

Article

Abstract

This paper introduces a new dataset and compares several methods for the recommendation of non-fiction audio visual material, namely lectures from the TED website. The TED dataset contains 1,149 talks and 69,023 profiles of users, who have made more than 100,000 ratings and 200,000 comments. The corresponding metadata, which we make available, can be used for training and testing generic or personalized recommender systems. We define content-based, collaborative, and combined recommendation methods for TED lectures and use cross-validation to select the best parameters of keyword-based (TFIDF) and semantic vector space-based methods (LSI, LDA, RP, and ESA). We compare these methods on a personalized recommendation task in two settings, a cold-start and a non-cold-start one. In the cold-start setting, semantic vector spaces perform better than keywords. In the non-cold-start setting, where collaborative information can be exploited, content-based methods are outperformed by collaborative filtering ones, but the proposed combined method shows acceptable performances, and can be used in both settings. For the generic recommendation task, LSI and RP again outperform TF-IDF.

Keywords

Content-based multimedia indexing Recommender systems Multimedia recommendation TED lectures 

References

  1. 1.
    Adomavicius G, Tuzhilin A (2011) Context-aware recommender systems. In: Ricci F, Rokach L, Shapira B, Kantor PB (eds) Recommender systems handbook. Springer, New York, pp 217–253CrossRefGoogle Scholar
  2. 2.
    Anderson C (2006) The long tail: why the future of business is selling less of more. Hyperion, New YorkGoogle Scholar
  3. 3.
    Antulov-Fantulin N, Bošnjak M, žnidaršič M, Grčar M, Morzy M, Šmuc T (2011) ECML/PKDD 2011 discovery challenge overview. In: Proceedings of the ECML/PKDD 2011 discovery challenge workshop, AthensGoogle Scholar
  4. 4.
    Arapakis I, Moshfeghi Y, Joho H, Ren R, Hannah D, Jose JM (2009) Enriching user profiling with affective features for the improvement of a multimodal recommender system. In: Proceedings of the ACM international conference on image and video retrieval, Santorini, CIVR ’09, pp 29:1–29:8Google Scholar
  5. 5.
    Arapakis I, Moshfeghi Y, Joho H, Ren R, Hannah D, Jose JM (2009) Integrating facial expressions into user profiling for the improvement of a multimodal recommender system. In: Proceedings of the 2009 IEEE international conference on multimedia and expo, New York, ICME’09, pp 1440–1443Google Scholar
  6. 6.
    Blei DM, Ng AY, Jordan MI (2003) Latent dirichlet allocation. J Mach Learn Res 3(30):993–1022MATHGoogle Scholar
  7. 7.
    Cremonesi P, Koren Y, Turrin R (2010) Performance of recommender algorithms on top-n recommendation tasks. In: Proceedings of the 4th ACM conference on recommender systems, Barcelona, RecSys ’10Google Scholar
  8. 8.
    Dasiopoulou S, Tzouvaras V, Kompatsiaris I, Strintzis M (2010) Enquiring MPEG-7 based multimedia ontologies. Multimed Tools Appl 46(2–3):331–370CrossRefGoogle Scholar
  9. 9.
    Degemmis M, Lops P, Semeraro G (2007) A content-collaborative recommender that exploits wordnet-based user profiles for neighborhood formation. User Model User-Adap Inter 17(3):217–255CrossRefGoogle Scholar
  10. 10.
    Deshpande M, Karypis G (2004) Item-based top-N recommendation algorithms. ACM Trans Inf Syst 22(1):143–177CrossRefGoogle Scholar
  11. 11.
    Di Massa R, Montagnuolo M, Messina A (2010) Implicit news recommendation based on user interest models and multimodal content analysis. In: Proceedings of the 3rd international workshop on automated information extraction in media production, Firenze, AIEMPro ’10, pp 33–38Google Scholar
  12. 12.
    Federico M, Cettolo M, Bentivogli L, Paul M, Stüker S (2012) Overview of the IWSLT 2012 evaluation campaign. In: Proceedings of the international workshop on spoken language translation, Hong-Kong, IWSLT ’12Google Scholar
  13. 13.
    Gabrilovich E, Markovitch S (2007) Computing semantic relatedness using Wikipedia-based explicit semantic analysis. In: Proceedings of the 20th international joint conference on artificial intelligence, Hyderabad, IJCAI’07, pp 1606–1611Google Scholar
  14. 14.
    Herlocker JL, Konstan JA, Terveen LG, Riedl JT (2004) Evaluating collaborative filtering recommender systems. ACM Trans Inf Syst 22(1):5–53CrossRefGoogle Scholar
  15. 15.
    Hofmann T (1999) Probabilistic latent semantic indexing. In: Proceedings of the 22nd annual international ACM SIGIR conference on research and development in information retrieval, Berkeley, SIGIR ’99Google Scholar
  16. 16.
    Hu Y, Koren Y, Volinsky C (2008) Collaborative filtering for implicit feedback datasets. In: Proceedings of the 8th IEEE international conference on data mining, ICDM ’08, pp 263–272Google Scholar
  17. 17.
    Joachims T (2006) Training linear SVMs in linear time. In: Proceedings of the ACM conference on knowledge discovery and data mining, Philadelphia, KDD ’06, pp 217–226Google Scholar
  18. 18.
    Johansson P (2003) Madfilm—a multimodal approach to handle search and organization in a movie recommendation system. In: Proceedings of the 1st nordic symposium on multimodal communication, Copenhagen, pp 53–65Google Scholar
  19. 19.
    Koren Y, Bell R (2011) Advances in collaborative filtering. In: Ricci F, Rokach L, Shapira B, Kantor PB (eds) Recommender systems handbook. Springer, New York, pp 145–186CrossRefGoogle Scholar
  20. 20.
    Lees-Miller J, Anderson F, Hoehn B, Greiner R (2008) Does Wikipedia information help Netflix predictions? In: Proceedings of the 7th international conference on machine learning and applications, San Diego, ICMLA ’08, pp 337–343Google Scholar
  21. 21.
    Li Y, Hu J, Zhai C, Chen Y (2010) Improving one-class collaborative filtering by incorporating rich user information. In: Proceedings of the 19th ACM international conference on information and knowledge management, Toronto, CIKM ’10, pp 959–968Google Scholar
  22. 22.
    Lops P, Gemmis M, Semeraro G (2011) Content-based recommender systems: state of the art and trends. In: Ricci F, Rokach L, Shapira B, Kantor PB (eds) Recommender systems handbook. Springer, New York, pp 73–105CrossRefGoogle Scholar
  23. 23.
    Magnini B, Strapparava C (2001) Improving user modelling with content-based techniques. In: Bauer M, Gmytrasiewicz P, Vassileva J (eds) User modeling 2001. Springer, New York, pp 74–83CrossRefGoogle Scholar
  24. 24.
    Mahmood T, Ricci F (2009) Improving recommender systems with adaptive conversational strategies. In: Proceedings of the 20th ACM conference on hypertext and hypermedia, Torino, HT ’09, pp 73–82Google Scholar
  25. 25.
    Martinez J (2002) Standards—MPEG-7 overview of MPEG-7 description tools, part 2. IEEE Multimed 9(3):83–93CrossRefGoogle Scholar
  26. 26.
    Mei T, Yang B, Hua XS, Li S (2011) Contextual video recommendation by multimodal relevance and user feedback. ACM Trans Inf Syst 29(2):10:1–10:24CrossRefGoogle Scholar
  27. 27.
    Middleton SE, Shadbolt NR, De Roure DC (2004) Ontological user profiling in recommender systems. ACM Trans Inf Syst 22(1):54–88CrossRefGoogle Scholar
  28. 28.
    Ning X, Karypis G (2011) SLIM: sparse linear methods for top-N recommender systems. In: Proceedings of the 11th IEEE international conference on data mining, Vancouver, ICDM ’11, pp 497–506Google Scholar
  29. 29.
    Pan R, Scholz M (2009) Mind the gaps: weighting the unknown in large-scale one-class collaborative filtering. In: Proceedings of the 15th ACM SIGKDD international conference on knowledge discovery and data mining, Paris, KDD ’09, pp 667–676Google Scholar
  30. 30.
    Pan R, Zhou Y, Cao B, Liu N, Lukose R, Scholz M, Yang Q (2008) One-class collaborative filtering. In: Proceedings of the 8th IEEE international conference on data mining, Pisa, ICDM ’08, pp 502–511Google Scholar
  31. 31.
    Papagelis M, Plexousakis D (2005) Qualitative analysis of user-based and item-based prediction algorithms for recommendation agents. In: Engineering applications of artificial intelligence, Pergamon, pp 152–166Google Scholar
  32. 32.
    Pappas N, Popescu-Belis A (2013) Combining content with user preferences for TED lecture recommendation. In: Proceedings of the 11th international workshop on content based multimedia indexing, Veszprém, Hungary, CBMI ’13, pp 47–52Google Scholar
  33. 33.
    Pappas N, Popescu-Belis A (2013) Sentiment analysis of user comments for one-class collaborative filtering over TED talks. In: Proceedings of the 36th ACM SIGIR conference on research and development in information retrieval, Short papers, Dublin, SIGIR ’13, pp 773–776Google Scholar
  34. 34.
    Řehůřek R, Sojka P (2010) Software framework for topic modeling with large corpora. In: Proceedings of the LREC 2010 workshop on new challenges for NLP frameworks, Valletta, pp 45–50Google Scholar
  35. 35.
    Rendle S, Freudenthaler C, Gantner Z, Schmidt-Thieme L (2009) BPR: Bayesian personalized ranking from implicit feedback. In: Proceedings of the 25th conference on uncertainty in artificial intelligence, Montreal, UAI ’09, pp 452–461Google Scholar
  36. 36.
    Sahlgren M (2005) An introduction to random indexing. In: Proceedings of the 7th international conference on terminology and knowledge engineering, methods and applications of semantic indexing workshop, vol 5. CopenhagenGoogle Scholar
  37. 37.
    Sahlgren M (2006) The word-space model: using distributional analysis to represent syntagmatic and paradigmatic relations between words in high-dimensional vector spaces. PhD thesis, Stockholm University, StockholmGoogle Scholar
  38. 38.
    Salton G, Buckley C (1988) Term-weighting approaches in automatic text retrieval. Inf Process Manag 24(5):513–523CrossRefGoogle Scholar
  39. 39.
    Sarwar B, Karypis G, Konstan J, Riedl J (2001) Item-based collaborative filtering recommendation algorithms. In: Proceedings of the 10th international conference on World Wide Web, Hong Kong, WWW ’01, pp 285–295Google Scholar
  40. 40.
    Semeraro G, Degemmis M, Lops P, Basile P (2007) Combining learning and word sense disambiguation for intelligent user profiling. In: Proceedings of the 20th international joint conference on artificial intelligence, Hyderabad, IJCAI ’07, pp 2856–2861Google Scholar
  41. 41.
    Semeraro G, Basile P, De Gemmis M, Lops P (2009) User profiles for personalizing digital libraries. In: Theng Y, D G, Foo S, Na J (eds) Handbook of research on digital libraries design development and impact. Information Science Reference, pp 149–158Google Scholar
  42. 42.
    Semeraro G, Lops P, Basile P, de Gemmis M (2009) Knowledge infusion into content-based recommender systems. In: Proceedings of the 3rd ACM conference on recommender systems, New York, RecSys ’09, pp 301–304Google Scholar
  43. 43.
    Shani G, Gunawardana A (2011) Evaluating recommendation systems. In: Ricci F, Rokach L, Shapira B, Kantor PB (eds) Recommender systems handbook. Springer, New York, pp 257–297CrossRefGoogle Scholar
  44. 44.
    Shi Y, Karatzoglou A, Baltrunas L, Larson M, Oliver N, Hanjalic A (2012) CLiMF: learning to maximize reciprocal rank with collaborative less-is-more filtering. In: Proceedings of the 6th ACM conference on recommender systems, Dublin, RecSys ’12, pp 139–146Google Scholar
  45. 45.
    Shin H, Lee M, Kim E (2009) Personalized digital TV content recommendation with integration of user behavior profiling and multimodal content rating. IEEE Trans Consum Electron 55(3):1417–1423CrossRefGoogle Scholar
  46. 46.
    Sindhwani V, Bucak SS, Hu J, Mojsilovic A (2009) A family of non-negative matrix factorizations for one-class collaborative filtering problems. In: Proceedings of the 3rd ACM conference on recommender systems, recommender based industrial applications workshop, New York, RecSys ’09Google Scholar
  47. 47.
    Smirnov AV, Krizhanovsky A (2008) Information filtering based on Wiki index database. CoRR arXiv:08042354
  48. 48.
    Tsinaraki C, Christodoulakis S (2006) A multimedia user preference model that supports semantics and its application to MPEG 7/21. In: Proceedings of the 12th international conference on multi-media modelling, Beijing, p 8Google Scholar
  49. 49.
    Yang B, Mei T, Hua XS, Yang L, Yang SQ, Li M (2007) Online video recommendation based on multimodal fusion and relevance feedback. In: Proceedings of the 6th ACM international conference on image and video retrieval, Amsterdam, CIVR ’07, pp 73–80Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Idiap Research Institute and École Polytechnique Fédérale de LausanneMartignySwitzerland
  2. 2.Idiap Research InstituteMartignySwitzerland

Personalised recommendations