Skip to main content
Log in

Grayscale image segmentation by spatially variant mixture model with student’s t-distribution

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

A spatially variant finite mixture model with Student’s t-distribution component function is proposed for grayscale image segmentation. This model employs a new weight function which contains the information along the different spatial directions indicating the relationship of the pixels in the neighborhood. The label probability proportions are explicitly represented as probability vectors in the model. Gradient descend method is used to update the unknown parameters. The proposed model contains fewer parameters and it is easy to be implemented compare with the Markov random field (MRF) models. Comprehensive experiments on synthetic and natural images are carried out to demonstrate that the proposed model outperforms some other related ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Blekas K, Likas A, Galatsanos N, Lagaris I (2005) A spatially constrained mixture model for image segmentation. IEEE Trans Neural Netw 16:494–498. doi:10.1109/TNN.2004.841773

    Article  Google Scholar 

  2. Bishop C (2006) Pattern recognition and machine learning. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  3. Carson C, Belongie S, Greenspan H, Malik J (2002) Blobword:image segmentation using expectation-maximization and its application to image querying. IEEE Trans Pattern Anal Mach Intell 24:1026–1038. doi:10.1109/TPAMI.2002.1023800

    Article  Google Scholar 

  4. Chatzis SP, Kosmopoulos DI (2011) A variational Bayesian methodology for hidden Markov models utilizing student’s-t mixtures. Pattern Recogn 44:295–306. doi:10.1016/j.patcog.2010.09.001

    Article  MATH  Google Scholar 

  5. Chatzis SP, Kosmopoulos DI, Varvarigou TA (2008) Signal modeling and classification using a robust latent space model based on t distributions. IEEE Trans Signal Process 56:949–963. doi:10.1109/TSP.2007.907912

    Article  MathSciNet  Google Scholar 

  6. Chatzis SP, Kosmopoulos DI, Varvarigou TA (2009) Robust sequential data modeling using an outlier to tolerant hidden Markov model. IEEE Trans Pattern Anal Mach Intell 31:1657–1669

    Article  Google Scholar 

  7. Dempster P, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via EM algorithm. J R Stat Soc 39:1–38

    MATH  MathSciNet  Google Scholar 

  8. Forsyth DA, Ponce J (2003) Computer vision: a modern approach. Prentice Hall, Englewood Cliffs

    Google Scholar 

  9. Geman S, Geman D (1984) Stochastic relaxation, Gibbs distributions,and the Bayesian restoration of images. IEEE Trans Pattern Anal Mach Intell 6:721–741

    Article  MATH  Google Scholar 

  10. Geusebroek JM, Burghouts GJ, Smeulders AW (2005) The Amsterdam library of object images. Int J Comput Vis 61:103–112. doi:10.1023/B:VISI.0000042993.50813.60

    Article  Google Scholar 

  11. Ismail B, Amar M (2008) A region merging prior for variational level set image segmentation. IEEE Trans Image Process 17:2301–2311. doi:10.1109/TIP.2008.2006425

    Article  MathSciNet  Google Scholar 

  12. Jordan MT, Ghabramani Z, Jaakkola TS, Saul LK (1999) An introduction to variational methods for graphical models. Mach Learn 37:183–233. doi:10.1023/A:1007665907178

    Article  MATH  Google Scholar 

  13. Li SZ (2009) Markov random field modeling in image analysis. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  14. Mariano R, Oscar D, Washington M, Alonso R (2012) Spatial sampling for image segmentation. Comput J 55:313–324. doi:10.1093/comjnl/bxr032

    Article  Google Scholar 

  15. Martin D, Fowlkes C, Tal D, Malik J (2001) A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proc IEEE conf computer vision (ICCV2001), pp 416–423

  16. McLachlan G, Peel D (2000) Finite mixture models. Wiley, New York

    Book  MATH  Google Scholar 

  17. Nikou C, Galatsanos N, Likas A (2007) A class-adaptive spatially variant mixture model for image segmentation. IEEE Trans Image Process 16:1121–1130. doi:10.1109/TIP.2007.891771

    Article  MathSciNet  Google Scholar 

  18. Peel D, McLachlan GJ (2000) Robust mixture modelling using the t distribution. Stat Comput 10:335–344. doi:10.1023/A:1008981510081

    Article  Google Scholar 

  19. Ren X, Malik J (2003) Learning a classification model for segmentation. In: Proc IEEE conf computer vision (ICCV2003), pp 10–17

  20. Sanjay GS, Hebert TJ (1998) Bayesian pixel classification using spatially variant finite mixtures and the generalized EM algorithm. IEEE Trans Image Process 7:1014–1028. doi:10.1109/83.701161

    Article  Google Scholar 

  21. Sfikas G, Nikou C, Galatsanos N, Heinrich C (2010) Spatially varying mixtures incorporating line processes for image segmentation. J Math Imaging Vis 36:91–110. doi:10.1007/s10851-009-0174-x

    Article  MathSciNet  Google Scholar 

  22. Svensen M, Bishop C (2005) Robust Bayesian mixture modelling. Neurocomputing 64:235–252. doi:10.1016/j.neucom.-2004.11.018

    Article  Google Scholar 

  23. Thanh MN, Wu QM, (2012) Gaussian-mixture-model-based spatial neighborhood relationships for pixel labeling problem. IEEE Trans Syst Man Cybern, Part B, Cybern 42:193–202. doi:10.1109/TSMCB.2011.2161284

    Article  Google Scholar 

  24. Thanh MN, Wu QM, Ahuja S (2010) An extension of the standard mixture model for image segmentation. IEEE Trans Neural Netw 21:1326–1338. doi:10.1109/TNN.2010.2054109

    Article  Google Scholar 

  25. Titterington DM, Smith AFM, Makov UE (1985) Statistical analysis of finite mixture distributions. Wiley, New York

    MATH  Google Scholar 

  26. Unnikrishnan R, Pantofaru C, Hebert M (2007) Toward objective evaluation of image segmentation algorithms. IEEE Trans Pattern Anal Mach Intell 29:929–944. doi:10.1109/TPAMI.2007.1046

    Article  Google Scholar 

  27. Woolrich M, Behrens T (2006) Variational Bayes inference of spatial mixture models for segmentation. IEEE Trans Med Imag 25:1380–1391. doi:10.1109/TMI.2006.880682

    Article  Google Scholar 

  28. Woolrich M, Behrens T, Bechkmann C, Smith S (2005) Mixture models with adaptive spatial regularisation for segmentation with an application to FMRI data. IEEE Trans Med Imag 24:1–11. doi:10.1109/TMI.2004.836545

    Article  Google Scholar 

  29. Zhang Y, Brady M, Smith S (2001) Segmentation of brain MR images through a hidden Markov random field model and the expectation maximization algorithm. IEEE Trans Med Imag 20:45–57. doi:10.1109/42.906424

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers for their valuable comments and suggestions, which greatly helped to improve both the technical content and the presentation quality of the paper. This work was supported by National Basic Research Program of China (973 Program) under Grant 2011CB302201, and National Nature Science Foundation of China under grant No. 60931160441 and No. 61003042.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhang Yi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiong, T., Yi, Z. & Zhang, L. Grayscale image segmentation by spatially variant mixture model with student’s t-distribution. Multimed Tools Appl 72, 167–189 (2014). https://doi.org/10.1007/s11042-012-1336-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-012-1336-1

Keywords

Navigation