Skip to main content
Log in

Distributed wide-area multi-object tracking with non-overlapping camera views

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

We present a distributed system for wide-area multi-object tracking across disjoint camera views. Every camera in the system performs multi-object tracking, and keeps its own trackers and trajectories. The data from multiple features are exchanged between adjacent cameras for object matching. We employ a probabilistic Petri Net-based approach to account for the uncertainties of the vision algorithms (such as unreliable background subtraction, and tracking failure) and to incorporate the available domain knowledge. We combine appearance features of objects as well as the travel-time evidence for target matching and consistent labeling across disjoint camera views. 3D color histogram, histogram of oriented gradients, local binary patterns, object size and aspect ratio are used as the appearance features. The distribution of the travel time is modeled by a Gaussian mixture model. Multiple features are combined by the weights, which are assigned based on the reliability of the features. By incorporating the domain knowledge about the camera configurations and the information about the received packets from other cameras, certain transitions are fired in the probabilistic Petri net. The system is trained to learn different parameters of the matching process, and updated online. We first present wide-area tracking of vehicles, where we used three non-overlapping cameras. The first and the third cameras are approximately 150 m apart from each other with two intersections in the blind region. We also present an example of applying our method to a people-tracking scenario. The results show the success of the proposed method. A comparison between our work and related work is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Albanese M, Chellappa R, Moscato V, Picariello A (2008) A constrained probabilistic petri net framework for human activity detection in video. IEEE Trans Multimedia 10(8):1429–1443

    Article  Google Scholar 

  2. Anjum N, Cavallaro A (2009) Trajectory association and fusion across partially overlapping cameras. In: Proc. of the IEEE int’l conf. on advanced video and signal based surveillance

  3. Baltieri D, Vezzani R, Cucchiara R (2011) 3DPes: 3D people dataset for surveillance and forensics. In: Proc. of the 1st int’l ACM workshop on multimedia access to 3D human objects, pp 59–64

  4. Black J, Ellis T, Rosin P (2002) Multi view image surveillance and tracking. In: Proc. of workshop on motion and video computing, pp 169–174

  5. Cai Y, Huang K, Tan T (2008) Human appearance matching across multiple non-overlapping cameras. In: Proc. of the int’l conf. on pattern recognition

  6. Calderara S, Prati A, Vezzani R, Cucchiara R (2005) Consistent labeling for multi-camera object tracking. Image Analysis and Processing 3617:1206–1214

    Google Scholar 

  7. Cao X, Wu C, Lan J, Yan P, Li X (2011) Vehicle detection and motion analysis in low-altitude airborne video under urban environment. IEEE Trans Circuits Syst Video Technol 21(10):1522–1533

    Google Scholar 

  8. Casares M, Velipasalar S, Pinto A (2010) Light-weight salient foreground detection for embedded smart cameras. Comput Vis Image Underst 114(11):1223–1237

    Article  Google Scholar 

  9. Cheng E, Madden C, Piccardi M (2006) Mitigating the effects of variable illumination for tracking across disjoint camera views. In: Proc. of IEEE int’l conf. on video and signal based surveillance

  10. Chilgunde A, Kumar P, Ranganath S, Huang W (2004) Multi-camera target tracking in blind regions of cameras with non-overlapping fields of view. In: Proc. of the British machine vision conference

  11. Cohen I, Ma Y, Miller B (2008) Associating moving objects across non-overlapping cameras: a query-by-example approach. In: Proc. of IEEE conf. on technologies for homeland security, pp 566–571

  12. Comaniciu D, Ramesh V, Meer P (2000) Real-time tracking of non-rigid objects using mean shift. In: Proc. of IEEE conf. on computer vision and pattern recognition, pp 142–149

  13. Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. In: Proc. of IEEE Computer Society conf. on computer vision and pattern recognition, vol 1, pp 886–893

  14. David R, Alla H (1994) Petri Nets for modeling of dynamic systems. Automatica 30(2):175–202

    Article  MathSciNet  MATH  Google Scholar 

  15. del-Blanco C, Mohedano R, Garcia N, Salgado L, Jaureguizar F (2008) Color-based 3D particle filtering for robust tracking in heterogeneous environments. In: Proc. of 2nd ACM/IEEE int’l conf. on distributed smart cameras

  16. D’Orazio T, Mazzeo P, Spagnolo P (2009) Color brightness transfer function evaluation for non overlapping multi camera tracking. In: Proc. of ACM/IEEE int’l conf. on distributed smart cameras

  17. Geismann P, Knoll A (2010) Speeding up hog and lbp features for pedestrian detection by multiresolution techniques. In: Proc. of the int’l conf. on advances in visual computing, pp 243–252

  18. Huang T, Russell S (1998) Object identification: a Bayesian analysis with application to traffic surveillance. Artif Intell 103(1–2):77–93

    Article  MATH  Google Scholar 

  19. Huang C, Chiu W, Wang S, Chuang J (2010) Probabilistic modeling of dynamic traffic flow across non-overlapping camera views. In: Proc. of the int’l conf. on pattern recognition

  20. Jacobs RA (2002) What determines visual cue reliability? Trends Cogn Sci 6(8):345–350

    Article  Google Scholar 

  21. Javed O, Rasheed Z, Shafique K, Shah M (2003) Tracking across multiple cameras with disjoint views. In: Proc. of IEEE int’l conf. on computer vision, vol 2, pp 952–957

  22. Javed O, Shafique K, Shah M (2005) Appearance modeling for tracking in multiple non-overlapping cameras. In: Proc. of IEEE conf. on computer vision and pattern recognition, vol 2, pp 26–33

  23. Jeong K, Jaynes C (2008) Object matching in disjoint cameras using a color transfer approach. Mach Vis Appl 19(5):443–455

    Article  MATH  Google Scholar 

  24. Kang J, Cohan I, Medioni G (2005) Persistent objects tracking across multiple non overlapping cameras. In: Proc. of the IEEE workshop on motion and video computing

  25. Khan S, Shah M (2003) Consistent labeling of tracked objects in multiple cameras with overlapping fields of view. IEEE Trans Pattern Anal Mach Intell 25(10):1355–1360

    Article  Google Scholar 

  26. Madden C, Piccardi M (2007) A framework for track matching across disjoint cameras using robust shape and appearance features. In: Proc. of IEEE conf. on advanced video and signal based surveillance, pp 188–193

  27. Makris D, Ellis T, Black J (2004) Bridging the gaps between cameras. In: Proc. of IEEE Computer Society conf. on computer vision and pattern recognition

  28. Moller B, Plotz T, Fink G (2008) Calibration-free camera hand-over for fast and reliable person tracking in multi-camera setups. In: Proc. of the 19th int’l conf. on pattern recognition

  29. Monari E, Maerker J, Kroschel K (2009) A robust and efficient approach for human tracking in multi-camera systems. In: Proc. of the IEEE int’l conf. on advanced video and signal based surveillance, pp 134–139

  30. Murata T (1989) Petri Nets: properties, analysis and applications. Proc IEEE 77(4):541–580

    Article  Google Scholar 

  31. Niu C, Grimson E (2006) Recovering non-overlapping network topology using far-field vehicle tracking data. In: Proc. of the int’l conf. on pattern recognition

  32. Ojala T, Pietikainen M, Harwood D (1996) A comparative study of texture measures with classification based on feature distributions. Pattern Recogn 29(1):51–59

    Article  Google Scholar 

  33. Ojala T, Pietikainen M, Maenpaa T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987

    Article  Google Scholar 

  34. Pflugfelder R, Bischof H (2008) Tracking across non-overlapping views via geometry. In; Proc. of the int’l conf. on pattern recognition

  35. Porikli F (2003) Inter-camera color calibration by correlation model function. In: Proc. of IEEE int’l conf. on image processing

  36. Prosser B, Gong S, Xiang T (2008) Multi-camera matching using bi-directional cumulative brightness transfer functions. In: British machine vision conference

  37. Rahimi A, Dunagan B, Darrell T (2004) Simultaneous calibration and tracking with a network of non-overlapping sensors. In: Proc. of IEEE Computer Society conf. on computer vision and pattern recognition, vol 1, pp I-187–I-194

  38. Triesch J, von der Malsburg C (2001) Democratic integration: self-organized integration of adaptive cues. Neural Comput 13(9):2049–2074

    Article  MATH  Google Scholar 

  39. Velipasalar S, Schlessman J, Chen C, Wolf W, Singh J (2008) A scalable clustered camera system for multiple object tracking. EURASIP J Image Video Process 542808

  40. Wang X, Han T, Yan S (2009) An HOG-LBP human detector with partial occlusion handling. In: Proc. of int’l conf. on computer vision, pp 32–38

  41. Wang Y, Velipasalar S, Gursoy M (2010) Wide-area multi-object tracking with non-overlapping camera views. In: Proc. of IEEE int’l conf. on multimedia and expo

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Senem Velipasalar.

Additional information

This work has been funded in part by NSF grant CNS-1205458 and NSF CAREER grant CNS-1206291.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Velipasalar, S. & Gursoy, M.C. Distributed wide-area multi-object tracking with non-overlapping camera views. Multimed Tools Appl 73, 7–39 (2014). https://doi.org/10.1007/s11042-012-1267-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-012-1267-x

Keywords

Navigation