Multimedia Tools and Applications

, Volume 73, Issue 1, pp 129–150 | Cite as

Optimal placement of multiple visual sensors considering space coverage and cost constraints

  • Yunyoung NamEmail author
  • Sangjin Hong


This paper proposes an optimal camera placement method that analyzes static spatial information in various aspects and calculates priorities of spaces using modeling the moving people pattern and simulation of pedestrian movement. To derive characteristics of space and to cover the space efficiently, an agent-based camera placement method has been developed considering the camera performance as well as the space utility extracted from a path finding algorithm. The simulation shows that the method not only determines the optimal number of cameras, but also coordinates the position and orientation of a camera efficiently considering the installation costs. Experimental results show that our approach achieves a great performance enhancement compared to other existing methods.


Optimal camera placement Video surveillance Sensor planning Sensor placement Multiple cameras 



The authors would like to thank Uin Burn for his valuable contribution to this project. They would also like to thank the anonymous reviewers for their valuable comments which helped to improve the quality and presentation of this paper.


  1. 1.
    Agarwal P, Ezra E, Ganjugunte S (2009) Efficient sensor placement for surveillance problems. In: Krishnamachari B, Suri S, Heinzelman W, Mitra U (eds) Distributed computing in sensor systems. Lecture notes in computer science, vol 5516. Springer, Berlin/Heidelberg, pp 301–314CrossRefGoogle Scholar
  2. 2.
    Ai J, Abouzeid A (2006) Coverage by directional sensors in randomly deployed wireless sensor networks. J Comb Optim 11(1):21–41. doi: 10.1007/s10878-006-5975-x MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Ballard P, Vacherand F (1993) The manhattan method: a fast cartesian elevation map reconstruction from range data. In: 1993 IEEE international conference on robotics and automation, 1993. Proceedings, vol 3, pp 143–148. doi: 10.1109/ROBOT.1993.291858
  4. 4.
    Bodor R, Drenner A, Schrater P, Papanikolopoulos N (2007) Optimal camera placement for automated surveillance tasks. J Intell Robot Syst 50:257–295. doi: 10.1007/s10846-007-9164-7 CrossRefGoogle Scholar
  5. 5.
    Chen S, Li Y (2004) Automatic sensor placement for model-based robot vision. IEEE Trans Syst Man Cybern Part B, Cybern 34(1):393–408. doi: 10.1109/TSMCB.2003.817031 CrossRefGoogle Scholar
  6. 6.
    Collins R, Lipton A, Fujiyoshi H, Kanade T (2001) Algorithms for cooperative multisensor surveillance. Proc IEEE 89(10):1456–1477. doi: 10.1109/5.959341 CrossRefGoogle Scholar
  7. 7.
    Erdem UM, Sclaroff S (2004) Optimal placement of cameras in floorplans to satisfy task requirements and cost constraints. In: In Proc. of OMNIVIS workshopGoogle Scholar
  8. 8.
    Erdem UM, Sclaroff S (2006) Automated camera layout to satisfy task-specific and floor plan-specific coverage requirements. Comput Vis Image Underst 103:156–169. doi: 10.1016/j.cviu.2006.06.005. CrossRefGoogle Scholar
  9. 9.
    Hart P, Nilsson N, Raphael B (1968) A formal basis for the heuristic determination of minimum cost paths. IEEE Trans Syst Sci Cybern 4(2):100–107. doi: 10.1109/TSSC.1968.300136 CrossRefGoogle Scholar
  10. 10.
    Hörster E, Lienhart R (2006) On the optimal placement of multiple visual sensors. In: Proceedings of the 4th ACM international workshop on Video Surveillance and Sensor Networks, VSSN ’06. ACM, New York, NY, pp 111–120. doi:10.1145/1178782.1178800 CrossRefGoogle Scholar
  11. 11.
    Lim F, Leoputra W, Tan T (2007) Non-overlapping distributed tracking system utilizing particle filter. J VLSI Signal Process 49:343–362. doi: 10.1007/s11265-007-0091-4 CrossRefGoogle Scholar
  12. 12.
    Mittal A, Davis LS (2004) Visibility analysis and sensor planning in dynamic environments. In: Pajdla T, Matas J (eds) Computer vision—ECCV 2004. Lecture notes in computer science, vol 3021. Springer, Berlin/Heidelberg, pp 175–189CrossRefGoogle Scholar
  13. 13.
    Munishwar VP, Abu-Ghazaleh NB (2010) Scalable target coverage in smart camera networks. In: Proceedings of the fourth ACM/IEEE International Conference on Distributed Smart Cameras, ICDSC ’10. ACM, New York, NY, pp 206–213. doi:10.1145/1865987.1866020 CrossRefGoogle Scholar
  14. 14.
    Nam Y, Hong S (2012) Optimal placement of multiple visual sensors using simulation of pedestrian movement. In: International conference on Computing, Networking and Communications (ICNC), 2012, pp 67–71. doi: 10.1109/ICCNC.2012.6167509
  15. 15.
    Olague G, Mohr R (1998) Optimal camera placement to obtain accurate 3d point positions. In: Fourteenth International Conference on Pattern recognition, 1998. Proceedings, vol 1, pp 8–10. doi: 10.1109/ICPR.1998.711066
  16. 16.
    O’Rourke J (1987) Art gallery theorems and algorithms. Oxford University Press, Inc., New York, NYzbMATHGoogle Scholar
  17. 17.
    Papadimitriou CH, Steiglitz K (1982) Combinatorial optimization: algorithms and complexity. Prentice-Hall, Inc., Upper Saddle River, NJzbMATHGoogle Scholar
  18. 18.
    Petrushin V, Wei G, Ghani R, Gershman A (2005) Multiple sensor indoor surveillance: problems and solutions. In: 2005 IEEE workshop on machine learning for signal processing, pp 349–354. doi: 10.1109/MLSP.2005.1532927
  19. 19.
    Piciarelli C, Micheloni C, Foresti GL (2010) Occlusion-aware multiple camera reconfiguration. In: Proceedings of the fourth ACM/IEEE International Conference on Distributed Smart Cameras, ICDSC ’10. ACM, New York, NY, pp 88–94. doi:10.1145/1865987.1866002 CrossRefGoogle Scholar
  20. 20.
    Ram S, Ramakrishnan KR, Atrey PK, Singh VK, Kankanhalli MS (2006) A design methodology for selection and placement of sensors in multimedia surveillance systems. In: Proceedings of the 4th ACM international workshop on Video Surveillance and Sensor Networks, VSSN ’06. ACM, New York, NY, pp 121–130. doi:10.1145/1178782.1178801 CrossRefGoogle Scholar
  21. 21.
    Ryu J, Nam Y, Cho WD, Stanacević M (2009) Camera placement for minimizing occlusion in object tracking systems. J Ubiquit Conv Technol 3(1):13–19Google Scholar
  22. 22.
    Sivaram GSVS, Kankanhalli MS, Ramakrishnan KR (2009) Design of multimedia surveillance systems. ACM Trans Multimedia Comput Commun Appl 5(3):23:1–23:25. doi:10.1145/1556134.1556140 CrossRefGoogle Scholar
  23. 23.
    Tarabanis K, Allen P, Tsai R (1995) A survey of sensor planning in computer vision. IEEE Trans Robot Autom 11(1):86–104. doi: 10.1109/70.345940 CrossRefGoogle Scholar
  24. 24.
    Tarabanis K, Tsai R, Allen P (1991) Automated sensor planning for robotic vision tasks. In: 1991 IEEE international conference on robotics and automation, 1991. Proceedings., vol 1, pp 76–82. doi: 10.1109/ROBOT.1991.131556
  25. 25.
    Tarabanis K, Tsai R, Allen P (1995) The mvp sensor planning system for robotic vision tasks. IEEE Trans Robot Autom 11(1):72–85. doi: 10.1109/70.345939 CrossRefGoogle Scholar
  26. 26.
    Tarabanis K, Tsai R, Kaul A (1996) Computing occlusion-free viewpoints. IEEE Trans Pattern Anal Mach Intell 18(3):279–292. doi: 10.1109/34.485556 CrossRefGoogle Scholar
  27. 27.
    Topcuoglu H, Ermis M, Sifyan M (2011) Positioning and utilizing sensors on a 3-d terrain part i—theory and modeling. IEEE Trans Syst Man Cybern Part C, Appl Rev 41(3):376–382CrossRefGoogle Scholar
  28. 28.
    Velastin S, Boghossian B, Lo B, Sun J, Vicencio-Silva M (2005) Prismatica: toward ambient intelligence in public transport environments. IEEE Trans Syst Man Cybern Part A, Syst Humans 35(1):164–182. doi: 10.1109/TSMCA.2004.838461 CrossRefGoogle Scholar
  29. 29.
    Wang J, Zhong N (2006) Efficient point coverage in wireless sensor networks. J Comb Optim 11:291–304. doi: 10.1007/s10878-006-7909-z MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Yao Y, Allen P (1995) Computing robust viewpoints with multi-constraints using tree annealing. In: IEEE International Conference on Systems, Man and Cybernetics, 1995. Intelligent Systems for the 21st Century, vol 2, pp 993–998. doi: 10.1109/ICSMC.1995.537898
  31. 31.
    Yao Y, Chen CH, Abidi B, Page D, Koschan A, Abidi M (2008) Sensor planning for automated and persistent object tracking with multiple cameras. In: IEEE Conference on Computer Vision and Pattern Recognition, 2008. CVPR 2008, pp 1–8. doi: 10.1109/CVPR.2008.4587515
  32. 32.
    Zhao J, Cheung SC, Nguyen T (2008) Optimal camera network configurations for visual tagging. IEEE J Select Top Signal Process 2(4):464–479. doi: 10.1109/JSTSP.2008.2001430 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Mobile Systems Design Laboratory, Department of Electrical and Computer EngineeringStony Brook University-SUNYStony BrookUSA

Personalised recommendations