Skip to main content

Advertisement

Log in

Color boosted visual saliency detection and its application to image classification

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

For many applications in graphics, design and human computer interaction, it is essential to reliably estimate the visual saliency of images. In this paper, we propose a visual saliency detection method that combines the respective merits of color saliency boosting and global region based contrast schemes to achieve more accurate saliency maps. Our method is compared with existing saliency detection methods when evaluated using four public available datasets. Experimental results show that our method consistently outperformed current state-of-the-art methods on predicting human fixations. We also demonstrate how the extracted saliency map can be used for image classification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Achanta R, Hemami S, Estrada F, Süsstrunk S (2009) Frequency-tuned salient region detection, in Proc. CVPR, pp. 1597–1604

  2. Ansgar RK, Li Z (2007) Feature-specific interactions in salience from combined feature contrasts: Evidence for a bottom–up saliency map in V1. Journal of Vision, vol. 7, no. 7(6), pp. 1–14

    Google Scholar 

  3. Barrington L, Marks TK, Hsiao JH-W, Cottrell GW (2008) NIMBLE: a kernel density model of saccade-based visual memory. Journal of Vision, vol. 8 no. 14, pp. 17: 1–14

  4. Boiman O, Shechtman E, Irani M (2008) In defense of nearest-neighbor based image classification, in Proc. CVPR, pp. 1–8

  5. Bruce NDB, Tsotsos JK (2006) Saliency based on information maximization, in Proc. NIPS, pp. 155–162

  6. Butko NJ, Zhang L, Cottrell GW, Movellan JR (2008) Visual saliency model for robot cameras, in Proc. ICRA, pp. 2398–2403

  7. Chen T, Cheng MM, Tan P, Shamir A, Hu SM (2009) Sketch2Photo: internet image montage, ACM Trans Graph vol. 28, no. 5(124), pp. 1–10

  8. Cheng MM, Zhang GX, Mitra NJ, Huang XL, Hu SM (2011) Global contrast based salient region detection, in Proc. CVPR, pp. 409–416

  9. Chikkerur S, Serre T, Tan C, Poggio T (2010) What and where: a Bayesian inference theory of attention. Vision Res 50(22):2233–2247

    Article  Google Scholar 

  10. Christopoulos C, Skodras A, Ebrahimi T (2000) The JPEG2000 still image coding system: an overview. IEEE Trans Consumer Elec 46(4):1103–1127

    Article  Google Scholar 

  11. Dale R, Geldof S, Prost J (2003) CORAL: using natural language generation for navigational assistance, in Proc. ACSC2003 vol. 16, pp. 1–10

  12. Duan L, Wu C, Miao J, Qing L, Yu Fu (2011) Visual saliency detection by spatially weighted dissimilarity, in Proc. CVPR, pp. 473–480

  13. Felzenszwalb PF, Huttenlocher DP (2004) Efficient graph-based image segmentation. IJCV 59(2):167–181

    Article  Google Scholar 

  14. Gao D, Mahadevan V, Vasconcelos N (2008) On the plausibility of the discriminant center-surround hypothesis for visual saliency. Journal of Vision, vol. 8, no. 7(13), pp. 1–18

  15. Gehler PV, Nowozin S (2009) On feature combination for multiclass object classification, in Proc. ICCV, pp. 221–228

  16. Goferman S, Zelnik-Manor L, Tal A (2010) Context-aware saliency detection, in Proc. CVPR, pp. 2376–2383

  17. Griffin G, Holub A, Perona P (2007) The Caltech-256, Caltech Technical Report 7694

  18. Guraya FFE, Cheikh FA, Tremeau A, Tong Y, Konik H (2010) Predictive saliency maps for surveillance videos, in Proc. DCABES, pp. 508–513

  19. Harel J, Koch C, Perona P (2006) Graph-based visual saliency, in Proc. NIPS, pp. 545–552

  20. Hou X, Zhang L (2007) Saliency detection: a spectral residual approach. Proc CVPR 1(800):1–8

    Google Scholar 

  21. Hou X, Zhang L (2008) Dynamic visual attention: searching for coding length increments, in Proc. NIPS, pp. 681-688

  22. Itti L, Koch C (2001) Computational modeling of visual attention. Nat Rev Neurosci 2(3):194–203

    Article  Google Scholar 

  23. Itti L, Koch C, Niebur E (1998) A model of saliency-based visual attention for rapid scene analysis. IEEE Trans Pattern Anal Mach Intell 20(11):1254–1259

    Article  Google Scholar 

  24. Judd T, Ehinger K, Durand F, Torralba A (2009) Learn to predict where humans look, in Proc. ICCV, pp. 2106–2113

  25. Kadir T, Zisserman A, Brady M, Brady M (2004) An affine invariant salient region detector, in Proc. ECCV, pp. 228–241

  26. Khan FS, van de Weijer J, Vanrell M (2009) Top–down color attention for object recognition, in Proc. ICCV, pp. 979–986

  27. Koen van de Sande EA, Gevers T, Snoek CGM (2010) Evaluating color descriptors for object and scene recognition. IEEE Trans Pattern Anal Mach Intell 32(9):1582–1596

    Article  Google Scholar 

  28. Liu T, Yuan Z, Sun J, Wang J, Zheng N, Tang X, Shum H-Y (2011) Learning to detect a salient object. IEEE Trans Pattern Anal Mach Intell 33(2):353–367

    Article  Google Scholar 

  29. Murray N, Vanrell M, Otazu X, Párraga CA (2011) Saliency estimation using a non-parametric low-level vision model, in Proc. CVPR, pp. 433–440

  30. Pinto N, Cox D, DiCarlo J (2008) Why is real-world visual object recognition hard? PLoS Comput Biol 4(1):151–156

    Article  MathSciNet  Google Scholar 

  31. Reynolds J, Desimone R (2003) Interacting roles of attention and visual salience in V4. Neuron 37(5):853–863

    Article  Google Scholar 

  32. SeoHJ, Milanfar P (2009) Static and space-time visual saliency detection by self-resemblance. Journal of Vision, vol. 9, no. 12(15), pp. 1–27

  33. Stottinger J, Hanbury A, Gevers T, Sebe N (2009) Lonely but attractive: sparse color salient points for object retrieval and categorization, in Proc. CVPR Workshops, pp. 1–8

  34. Tatler BW (2007) The central fixation bias in scene viewing: selecting an optimal viewing position independently of motor biases and image feature distributions. Journal of Vision, vol. 7, no. 14(4), pp. 1–17

    Google Scholar 

  35. Tatlera BW, Baddeleyb RJ, Gilchristb ID (2005) Visual correlates of fixation selection: effects of scale and time. Vision Res 45(5):643–659

    Article  Google Scholar 

  36. van de Weijer J, Gevers T, Bagdanov AD (2006) Boosting color saliency in image feature detection. IEEE Trans Pattern Anal Mach Intell 28(1):150–156

    Article  Google Scholar 

  37. van der Linde I, Rajashekar U, Bovik AC, Cormack LK (2009) DOVES: a database of visual eye movements. Spat Vis 22(2):161–177

    Article  Google Scholar 

  38. Vigo DAR, van de Weijer J, Gevers T (2010) Color edge saliency boosting using natural image statistics, in Proc. CGIV

  39. Wolfe J (2007) Guided search 4.0: current progress with a model of visual search. Integrated models of cognitive systems, pp. 99–119

  40. Wolfe J, Horowitz T (2004) What attributes guide the deployment of visual attention and how do they do it? Nat Rev Neurosci 5(6):495–501

    Article  Google Scholar 

  41. Wu H, Wang YS, Feng KC, Wong TT, Lee TY, Heng PA (2010) Resizing by symmetry-summarization. ACM Trans. Graph., vol. 29, no. 6(159), pp. 1–9

  42. Yang J, Yu K, Gong Y, Huang T (2009) Linear spatial pyramid matching using sparse coding for image classification, in Proc. CVPR, pp. 1794–1801

  43. Zenzo SD (1986) A note on the gradient of a multi-image. Journal of Computer Vision, Graphics, and Image Processing 33(1):116–125

    Article  MATH  Google Scholar 

  44. Zhai Y, Shah M (2006) Visual attention detection in video sequences using spatiotemporal cues, in Proc. ACM MM, pp. 815–824

  45. Zhang M, Alhajj R (2006) Improving the graph-based image segmentation method, in Proc. ICTAI, pp. 1–6

  46. Zhao Q, Koch C (2011) Learning a saliency map using fixated locations in natural scenes. Journal of Vision, vol. 11, no. 3(9), pp. 1–15

Download references

Acknowledgments

This work was supported by National Program on Key Basic Research Project (973 Program), under Grant No. 2012CB725305 and by The National Key Technology R&D Program of China, under Grant No. 2012BAH03F02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duanqing Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, B., Xu, D. Color boosted visual saliency detection and its application to image classification. Multimed Tools Appl 69, 877–896 (2014). https://doi.org/10.1007/s11042-012-1148-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-012-1148-3

Keywords

Navigation