Skip to main content
Log in

Priority-based selective H.264 SVC streaming over erroneous converged networks

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

This paper provides a detailed description and discussion of new optimal H.264 scalable video coding (SVC) transmission method over multi-path networks that have variable packet loss rates (PLR). The proposed method has three steps: (1) using flexible macroblock ordering (FMO), it prioritizes SVC layers and slice groups (SG) according to their affect on video quality; (2) it measures current channel status and predicts future bandwidths (BW); and (3) it allocates SVC layers and SGs to the prioritized channels by PLR. Experiments show that the proposed selective streaming method can improve video quality as much as 3.4 dB in peak signal-to-noise ratio (PSNR), and has better error resilience than traditional streaming methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Apostolopoulos J, Trott M (2004) Path diversity for enhanced media streaming. IEEE Commun Mag 42(8):80–87

    Article  Google Scholar 

  2. Begen AC, Altunbasak Y, Ergun O, Ammar MH (2005) Multi-path selection for multiple description video streaming over overlay networks. Signal Process Image Commun 20(1):39–60

    Article  Google Scholar 

  3. Chakareski J, Frossard P (2007) Adaptive systems for improved media streaming experience. IEEE Commun Mag 45(1):77 –83

    Article  Google Scholar 

  4. Chen J, Chan SH, Li V (2004) Multipath routing for video delivery over bandwidth-limited networks. IEEE J Sel Areas Commun 22(10):1920–1932

    Article  Google Scholar 

  5. Chen Y, Xie K, Zhang F, Pandit P, Boyce J (2006) Frame loss error concealment for SVC. J Zhejiang Univ Sci A 7(5):677–683

    Article  MATH  Google Scholar 

  6. Chen P, Lim J, Lee B, Kim M, Hahm S, Kim B, Lee K, Park K (2007) A network-adaptive svc streaming architecture. In: The 9th international conference on advanced communication technology, vol 2, pp 955 –960

  7. Chen H, Han Z, Hu R, Ruan R (2008) Adaptive FMO selection strategy for error resilient H.264 coding. In: International conference on audio, language and image processing, 2008. ICALIP 2008, pp 868–872

  8. Han SW, Tsui KL, Ariyajunya B, Kim SB (2010) A comparison of cusum, ewma, and temporal scan statistics for detection of increases in poisson rates. Qual Reliab Eng Int 26(3):279–289

    Article  Google Scholar 

  9. Hellge C, Schierl T, Wiegand T (2008) Receiver driven layered multicast with layer-aware forward error correction. In: 15th IEEE international conference on image processing, 2008. ICIP 2008, pp 2304–2307

  10. Huang HC, Peng WH, Chiang T, Hang HM (2007) Advances in the scalable amendment of H.264/AVC. IEEE Commun Mag 45(1):68–76

    Article  Google Scholar 

  11. JVT: Joint scalable video model (JSVM 9.18) and manual, cvs sever at garcon.ient.rwth-aachen.de (2009)

  12. Lambert P, Debevere P, De Cock J, Macq JF, Degrande N, De Vleeschauwer D, Van de Walle R (2009) Real-time error concealing bitstream adaptation methods for SVC in iptv systems. J Real-Time Image Process 4:79–90

    Article  Google Scholar 

  13. Mansour H, Nasiopoulos P, Leung V (2005) Low redundancy layered multiple description scalable coding using the subband extension of H.264/AVC. In: IEEE international symposium on circuits and systems, 2005. ISCAS 2005, vol 4, pp 4042–4045

  14. Martini MG, Mazzotti M, Lamy-Bergot C, Huusko J, Amon P (2007) Content adaptive network aware joint optimization of wireless video transmission. IEEE Commun Mag 45(1):84–90

    Article  Google Scholar 

  15. Richardson IEG (2004) H.264 and MPEG-4 video compression. Wiley, New York

    Google Scholar 

  16. Roberts S (1959) Control chart tests based on geometric moving averages. Technometrics 1(3):239–250

    Article  Google Scholar 

  17. Ryu ES (2009) Slice group map generation code on explicit mode for JSVM. http://r2d2n3po.tistory.com/trackback/28

  18. Ryu ES, Jayant N (2011) Home gateway for three-screen tv using H.264 SVC and raptor FEC. IEEE Trans Cons Elec 57(4):1652–1660

    Article  Google Scholar 

  19. Ryu ES, Han SW (2011) The slice group-based svc rate adaptation using channel prediction model. IEEE COMSOC MMTC E-Letter 6(5):39–41

    Google Scholar 

  20. Schierl T, Schwarz H, Marpe D, Wiegand T (2005) Wireless broadcasting using the scalable extension of H.264/AVC. In: IEEE international conference on multimedia and expo, pp 884–887

  21. SVC/AVC packet loss simulator (jvt-q069) (2005). http://wftp3.itu.int/av-arch/jvt-site/2005_10_Nice/JVT-Q069.zip

  22. Test sequences. ftp://ftp.tnt.uni-hannover.de/pub/svc/testsequences/

  23. Three screen television: The home gateway. http://www.ece.gatech.edu/research/labs/MMC/research.html#three_screen

  24. Wenger S (2002) Error patterns for internet experiments (vceg q15-i-16r1)

  25. Zhu X, Pan R, Prabhu M, Dukkipati N, Subramanian V, Bonomi F (2011) Layered internet video adaptation (liva): network-assisted bandwidth sharing and transient loss protection for video streaming. IEEE Trans Multimedia 13(4):720–732

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung Won Han.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ryu, ES., Han, S.W. Priority-based selective H.264 SVC streaming over erroneous converged networks. Multimed Tools Appl 68, 337–353 (2014). https://doi.org/10.1007/s11042-012-1121-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-012-1121-1

Keywords

Navigation