Skip to main content
Log in

Efficient tracking using a robust motion estimation technique

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Camera based supervision is a critical part of event detection and analysis applications. However, visual tracking still remains one of the biggest challenges in the area of computer vision, although it has been extensively discussed during in the previous years. In this paper we propose a robust tracking approach based on object flow, which is a motion model for estimating both the displacement and the direction of an object of interest. In addition, an observation model that utilizes a generative prior is adopted to tackle the pitfalls that derive from the appearance changes of the object under study. The efficiency of our technique is demonstrated using sequences captured in a complex industrial environment. The experimental results show that the proposed algorithm is sound, yielding improved performance in comparison with other tracking approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. This happens when the data space contains different distributions on each output dimension.

References

  1. Andriluka M, Roth S, Schiele B (2008) People-tracking-by-detection and people-detection-by-tracking. In: In CVPR

  2. Arulampalam MS, Maskell S, Gordon N (2002) A tutorial on particle filters for online nonlinear/non-gaussian bayesian tracking. IEEE Trans Signal Process 50:174–188

    Article  Google Scholar 

  3. Babenko B, Yang MH, Belongie S (2009) Visual tracking with online multiple instance learning. In: In CVPR

  4. Balestrino A, Landi A, Pacini L (2006) Vision system for monitoring the production of corrugated cardboard. In: IEEE international conference on control applications, computer aided control system design, pp 626–631

  5. Breitenstein MD, Reichlin F, Leibe B, Koller-Meier E, Gool LV (2009) Robust tracking-by-detection using a detector confidence particle filter. In: In ICCV

  6. Collins R, Liu Y, Leordeanu M (2005) Online selection of discriminative tracking features. PAMI 27:1631–1643

    Article  Google Scholar 

  7. Doulamis A (2010) Dynamic tracking re-adjustment: a method for automatic tracking recovery in complex visual environments. Multimed Tools Appl 50:49–73

    Article  Google Scholar 

  8. Gao T, Li G, Lian S, Zhang J (2011) Tracking video objects with feature points based particle filtering. Multimed Tools Appl 1–21. doi:10.1007/s11042-010-0676-y

  9. Geiger A, Urtasun R, Darrell T (2009) Rank priors for continuous non-linear dimensionality reduction. In: In CVPR

  10. Gong Z, Ding W, Zou H (2006) Data-logging and monitoring of production auto-lines based on visual-tracking tech. In: 32nd annual conference on IEEE industrial electronics (IECON), 2006, pp 5468–5473

  11. Grabner H, Bischof H (2006) On-line boosting and vision. In: In CVPR

  12. Heleno P, Davies R, Correia BAB, Dinis Ja (2002) A machine vision quality control system for industrial acrylic fibre production. EURASIP J Appl Signal Process 2002:728–735

    Article  Google Scholar 

  13. Odobez J-M, Gatica-Perez D, Ba S (2006) Embedding motion in model-based stochastic tracking. IEEE Trans Image Process 15:3515–3531

    Google Scholar 

  14. Khan Z, Balch T, Dellaert F (2004) An MCMC-based particle filter for tracking multiple interacting targets. In: In ECCV

  15. Kwon J, Lee K, Park F (2009) Visual tracking via geometric particle filtering on the affine group with optimal importance functions. In: In CVPR

  16. Lalos C, Grabner H, Van Gool L, Varvarigou T (2010) Object flow: learning object displacement. In: In proceedings of tenth international workshop on visual surveillance, ACCV

  17. Lawrence ND (2005) Probabilistic non-linear principal component analysis with gaussian process latent variable models. J Mach Learn Res 6:1783–1816

    MATH  MathSciNet  Google Scholar 

  18. Lawrence ND, Quiñonero Candela J (2006) Local distance preservation in the GP-LVM through back constraints. In: Proceedings of the 23rd international conference on machine learning, ICML

  19. Leibe B, Schindler K, Gool LV (2007) Coupled detection and trajectory estimation for multi-object tracking. In: In ICCV

  20. Leonardis A, Bischof H (2000) Robust recognition using eigenimages. CVIU 78:99–118

    Google Scholar 

  21. Li Y, Ai H, Yamashita T, Lao S, Kawade M (2007) Tracking in low frame rate video: a cascade particle filter with discriminative observers of different lifespans. In: In CVPR

  22. Liu B, Yang L, Huang J, Meer P, Gong L, Kulikowski C (2010) Robust and fast collaborative tracking with two stage sparse optimization. In: In ECCV

  23. Lu WL, Okuma K, Little JJ (2009) Tracking and recognizing actions of multiple hockey players using the boosted particle filter. Image Vis Comput 27:189–205

    Article  Google Scholar 

  24. Maskell S, Gordon N (2001) A tutorial on particle filters for on-line nonlinear/non-gaussian bayesian tracking. IEEE Trans Signal Process 50:174–188

    Google Scholar 

  25. Mörzinger R, Sardis M, Rosenberg I, Grabner H, Veres G, Bouchrika I, Thaler M, Schuster R, Hofmann A, Thallinger G, Anagnostopoulos V, Kosmopoulos D, Voulodimos A, Lalos C, Doulamis N, Varvarigou T, Zelada RP, Soler IJ, Stalder S, Van Gool L, Middleton L, Sabeur Z, Arbab-Zavar B, Carter J, Nixon M (2010) Tools for semi-automatic monitoring of industrial workflows. In: Proceedings of the first ACM international workshop on analysis and retrieval of tracked events and motion in imagery streams, ARTEMIS ’10. ACM, pp 81–86

  26. Peña M, López I, Osorio R (2006) Invariant object recognition robot vision system for assembly. In: Electronics, robotics and automotive mechanics conference, vol 1, pp 30–36

  27. Panagiotakis C, Doulamis A, Tziritas G (2009) Equivalent key frames selection based on iso-content principles. IEEE Trans Circuits Syst Video Technol 19:447–451

    Article  Google Scholar 

  28. Phung SL, Bouzerdoum A, Chai D (2002) A novel skin color model in YCbCr color space and its application to human face detection. In: International conference on image processing, vol 1, pp 289–292

  29. Santos-Victor J, Costeira J, Tome J, Sentieiro J (1993) A computer vision system for the characterization and classification of flames in glass furnaces. IEEE Trans Ind Appl 29:470–478

    Article  Google Scholar 

  30. Tan J, Arai T (2011) Triple stereo vision system for safety monitoring of human-robot collaboration in cellular manufacturing. In: IEEE international symposium on assembly and manufacturing (ISAM), pp 1–6

  31. Tipping ME, Bishop CM (1999) Probabilistic principal component analysis. J R Stat Soc Ser B 61:611–622

    Article  MATH  MathSciNet  Google Scholar 

  32. Turk M, Pentland A (1991) Face recognition using eigenfaces. In: In CVPR, pp 586–591

  33. Usamentiaga R, Molleda J, Garcia D, Bulnes F (2009) Machine vision system for flatness control feedback. In: Second international conference on machine vision. ICMV ’09, pp 105–110. doi:10.1109/ICMV.2009.14

  34. Veres G, Grabner H, Middleton L, Gool LV (2010) Automatic workflow monitoring in industrial environments. In: Asian conference on computer vision (ACCV)

  35. Viola P, Jones M (2001) Rapid object detection using a boosted cascade of simple features. In: In CVPR, pp 511–518

  36. Voulodimos A, Kosmopoulos D, Vasileiou G, Sardis E, Doulamis A, Anagnostopoulos V, Lalos C, Varvarigou T (2011) A dataset for workflow recognition in industrial scenes. In: International conference on IEEE image processing (ICIP)

  37. Voulodimos A, Kosmopoulos D, Veres G, Grabner H, Gool LV, Varvarigou T (2011) Online classification of visual tasks for industrial workflow monitoring. Neural Netw 852–860. doi:10.1016/j.neunet.2011.06.001

  38. Wang JM, Fleet DJ, Member S, Hertzmann A (2007) Gaussian process dynamical models for human motion. IEEE Trans Pattern Anal Mach Intell 30:283–298

    Article  Google Scholar 

  39. Woodley T, Stenger B, Cipolla R (2007) Tracking using online feature selection and a local generative model. In: In BMVC

  40. Yang M, Lv F, Xu W, Gong Y (2009) Detection driven adaptive multi-cue integration for multiple human tracking. In: In ICCV

Download references

Acknowledgements

This research was supported by the European Community Seventh Framework Programme under grant agreement no FP7-ICT-216465 SCOVIS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Constantinos Lalos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lalos, C., Voulodimos, A., Doulamis, A. et al. Efficient tracking using a robust motion estimation technique. Multimed Tools Appl 69, 277–292 (2014). https://doi.org/10.1007/s11042-012-0994-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-012-0994-3

Keywords

Navigation