Skip to main content
Log in

Event-driven video adaptation: A powerful tool for industrial video supervision

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Efficient video content adaptation requires techniques for content analysis and understanding as well as the development of appropriate mechanisms for content scaling in terms of the network properties, terminal devices characteristics and users’ preferences. This is particularly evident in industrial surveillance applications, due to the huge amount of data needed to be stored, delivered and handled. In this paper, we address both issues by incorporating (a) computer vision tools that allows efficient tracking of salient visual objects for long time regardless of the dynamics of the visual environment –via a self initialized tracking algorithm—and (b) an adaptive optimal rate distortion scheme able to allocate different priorities for each detected video object with respect to users’ needs, network platforms capabilities and terminal characteristics. The self initialized tracker firstly appropriately describes visual content, secondly incorporates adaptive mechanisms for automatically update the tracker to adjust to the current conditions and thirdly includes an efficient decision mechanism that estimates the time instances in which adaptation should be activated. For the rate distortion algorithm, an optimal adaptive framework is adopted which is capable of allocating the desired quality to objects of users’ interest without violating the target bit rate of the sequence. The Wavelet Packet Transform (WPT) is adopted towards this purpose. The advantage of the WPT is that it localizes the frequency components of each video object and therefore it offers additionally content adaptability according to video object texture coding. The WPT tree is transmitted only at the first frame of each shot and thus dew bits are required for its encoding. Experimental results and comparisons with other approaches are presented to illustrate the good performance of the proposed architecture. The results cover real-world and complex industrial environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Abdel-Mottaleb M, Krishnamachari S (2004) Multimedia descriptions based on MPEG-7: extraction and applications. IEEE Transactions on Multimedia 6(3):459–468

    Article  Google Scholar 

  2. Akrivas G, Doulamis ND, Doulamis AD, Kollias SD () “Scene Detection Methods for MPEG – Encoded Video Signals,” IEEE 10th Mediterranean Electrotechnical Conference (MELECON), pp. 677-680, Limassol Cyprus.

  3. Amonou I, Duhamel P (2000) Iterative backward segmentation for hierarchical wavelet image coding. Proc of IEEE International Conference on Image Processing (ICIP) 1:10–13

    Google Scholar 

  4. Anagnostopoulos V, Sardis E, Varvarigou T (2011) “An industrial visual surveillance framework based on a pre-configured behavior repertoire: A practical approach,” 13th International Conference on Modelling and Simulation, (UKSim 2011), art. no. 5754211, pp. 177-182

  5. Arulampalam S, Maskell S, Gordon N, Clapp T (2002) A tutorial on particle filters for on-line non-linear/non-Gaussian Bayesian tracking. IEEE Trans Signal Process 50(2):174–188

    Article  Google Scholar 

  6. Batra P (2000) Modeling and efficient optimization for object-based scalability and some related problems. IEEE Trans Image Process 9(10):1677–1692

    Article  Google Scholar 

  7. Bergman R, Nachlieli H (2011) Perceptual segmentation: combining image segmentation with object tagging. IEEE Transactions on Image Processing 20(6):1668–1681

    Article  MathSciNet  Google Scholar 

  8. Castagno R, Ebrahimi T, Kunt M (1998) Video segmentation based on multiple features for interactive multimedia applications. IEEE Trans Circuits and Systems for Video Technology 8(5):562–571

    Article  Google Scholar 

  9. Chang Shih-Fu, Puri A, Sikora T, Zhang H (2001) Special Issue on MPEG-7: Guest Editorial. IEEE Trans on Circuits & Systems for Video Technology 11(6):685–687

    Article  Google Scholar 

  10. Cybenko G (1989) Approximation by Superpositions of a Sigmoidal Function. Math Control, Signal Syst 2:303–314

    Article  MATH  MathSciNet  Google Scholar 

  11. De Keukelaere F, De Zutter S, Van de Walle R (2005) MPEG-21 digital item Processing. IEEE Transactions on Multimedia 7(3):427–434

    Article  Google Scholar 

  12. Doucet A, Godsill S, Andrieu C (2000) On sequential Monte Carlo sampling methods for Bayesian filtering. Statist Comput 10(3):197–208

    Article  Google Scholar 

  13. Doulamis N (2010) Coupled multi-object tracking and labeling for vehicle trajectory estimation and matching. Multimedia Tools and Applications 50(1):173–198

    Article  Google Scholar 

  14. Doulamis A (2010) “Dynamic tracking re-adjustment: a method for automatic tracking recovery in complex visual environments,” Multimedia Tools and Applications, Springer Press, 1380-7501, 1573-7721

  15. Doulamis A, Matsatsinis N () “Visual Understanding Industrial Workflows under Uncertainty on Distributed Service oriented Architectures,” Future Generation Computer Systems, (to appear)

  16. Doulamis N, Doulamis A, Kalogeras D, Kollias S (1998) Low bit rate coding of image sequence using adaptive regions of interest. IEEE Tran on Circuits & Systems for Video Technology 8(8):928–934

    Article  Google Scholar 

  17. Doulamis N, Doulamis A, Kalogeras D, Kollias S (1998) Very low bit-rate coding of image sequences using adaptive regions of interest. IEEE Trans Circuits and Systems for Video Technology 8(8):928–934

    Article  Google Scholar 

  18. Doulamis A, Doulamis N, Kollias S (2000) A fuzzy video content representation for video summarization and content-based retrieval. Signal Process 80:1049–1067

    Article  MATH  Google Scholar 

  19. Doulamis A, Doulamis Ν, Ntalianis K, Kollias S (2000) Efficient unsupervised content-based segmentation in stereoscopic video sequence. Journal of Artificial Tools, World Scientific Press 9(2):277–303

    Google Scholar 

  20. Dugad R, Ahuja N (2003) A scheme for spatial scalability using nonscalable encoders. IEEE Trans on CSVT 13(10):993–999

    Google Scholar 

  21. Harada N, Kamamoto Y, Moriya T, Hendry, Sabirin H, Kim M (2010) Archive and preservation of media content using MPEG-A. IEEE Multimedia Magazine 17(4):94–99

    Article  Google Scholar 

  22. Haridasan R, Baras JS (1998) Scalable coding of video objects. IEEE International Symposium on Circuits & Systems (ISCAS) 4:289–292

    Google Scholar 

  23. Huang S-C (2011) An advanced motion detection algorithm with video quality analysis for video surveillance systems. IEEE Transactions on Circuits and Systems for Video Technology 21(1):1–14

    Article  Google Scholar 

  24. ISO/IEC JTC1/SC29/WG11 N3156, “MPEG-4 Overview,” Doc. N3156, Maui, Hawaii, December 1999.

  25. Kao M-P, Nguyen T (2008) A fully scalable motion model for scalable video coding. IEEE Transactions on Image Processing 17(6):908–923

    Article  MathSciNet  Google Scholar 

  26. Kim T, Lee S, Paik J (2011) Combined shape and feature-based video analysis and its application to non-rigid object tracking. IET Image Processing 5(1):87–100

    Article  Google Scholar 

  27. Kosmopoulos DI, Doulamis ND, Voulodimos AS, Varvarigou TA () “Online behavior recognition in workflows allowing for user feedback,” Computer Vision Image Understanding, Elsevier Press, (to appear)

  28. Kreyszig E (1989) Introductory Functional Analysis with Applications. Wiley, New York

    MATH  Google Scholar 

  29. Leichter I, Lindenbaum M, Rivlin E (2009) Tracking by affine kernel transformations using color and boundary cues. IEEE Trans on Pattern Analysis and Machine Intelligence 31(1):164–171

    Article  Google Scholar 

  30. Li J, Nahrstedt K, Zhang H (2006) Special issue on content storage and delivery in peer-to-peer network. IEEE Transactions on Multimedia 8(2):431

    Article  Google Scholar 

  31. Luenberger DJ (1984) Linear and Non-Linear Programming, Addison-Wesley

  32. Meyer F, Beucher S (1990) Morphological segmentation. Journal of Visual Communication on Image Representation 1(1):21–46

    Article  Google Scholar 

  33. Nater F, Grabner H, Van Gool L (2011) “Unsupervised workflow discovery in industrial environments”, ICCV Workshop on Visual Surveillance

  34. Odobez J-M, Gatica-Perez D, Ba SO (2006) Embedding motion in model-based stochastic tracking. IEEE Trans Image Process 15(11):3515–3531

    Article  Google Scholar 

  35. Ohm J-R (2005) Advances in scalable video coding. Proc IEEE 93(1):42–56

    Article  Google Scholar 

  36. Patel NV, Sethi IK (1997) Video shot detection and characterization for video databases. Pattern Recognition 30(4):583–592

    Article  Google Scholar 

  37. Pereira F, Smith JA, Vetro A (2005) Introduction to the special section on MPEG-21. IEEE Transactions on Multimedia 7(3):397–399

    Article  Google Scholar 

  38. Perez-Peña F, Morgado-Estevez A, Montero-Gonzalez RJ, Linares-Barranco A, Jimenez-Moreno G (2011) “Video surveillance at an industrial environment using an Address Event vision sensor: Comparative between two different video sensor based on a bioinspired retina,” Proceedings of the International Conference on Signal Processing and Multimedia Applications, (SIGMAP 2011) -, pp. 131-134

  39. Sardis E, Matsatsinis N, Doulamis A (2011) “Sensor Networks and Multi-Agents in Industrial Workflows,” International Journal of Machine Learning and Computing, 1(2):205-212 ISSN: 2010-3700

  40. Sargin ME, Altinok A, Manjunath BS, Rose K (2011) Variable length open contour tracking using a deformable trellis. IEEE Transactions on Image Processing 20(4):1023–1035

    Article  MathSciNet  Google Scholar 

  41. Schoenemann T, Masnou S, Cremers D (2011) The elastic ratio: introducing curvature into ratio-based image segmentation. IEEE Transactions on Image Processing 20(9):2565–2581

    Article  MathSciNet  Google Scholar 

  42. Sikora T (1997) The MPEG-4 video standard verification model. IEEE Trans Circuits and Systems for Video Technology 7(1):19–31

    Article  Google Scholar 

  43. van der Schaar M, Radha H (2001) A hybrid temporal-SNR fine-granular scalability for Internet video. IEEE Trans on CSVT 11(3):318–331

    Google Scholar 

  44. Voulodimos AS, Doulamis ND, Kosmopoulos DI, Varvarigou TA () “Improving multi-camera activity recognition by employing neural network based readjustment,” Applied Artificial Intelligence, Elsevier Press, (to appear)

  45. Voulodimos A, Kosmopoulos D, Vasileiou G, Sardis ES, Doulamis AD, Anagnostopoulos V, Lalos CG, Varvarigou T (2011) “A Dataset for workflow recognition In industrial scenes,” IEEE International Conference on Image Processing (ICIP), Brussels, Belgium

  46. Wang J, Adelson E (1994) Representing moving images with layers. IEEE Trans Image Process 3:625–638

    Article  Google Scholar 

  47. Yang Y, Hemami SS (2000) Rate-distortion optimizations for region and object based wavelet video coding, 34th Asilomar Signals. Systems and Computers Conference 2:1363–1368

    Google Scholar 

  48. Yeo BL, Liu B (1995) Rapid scene analysis on compressed videos. IEEE Trans Circuits and Systems for Video Technology 5:533–544

    Article  Google Scholar 

  49. Young N, Evans AN (2011) Median centred difference gradient operator and its application in watershed segmentation. Electron Lett 47(3):178–180

    Article  Google Scholar 

  50. Zeng Y, Cheng L, Bi G, Kot A (2001) Integer DCTs and fast algorithms. IEEE Trans on Signal Processing 49(11):2774–2782

    Article  MathSciNet  Google Scholar 

  51. Zhang G, Jia J, Hua W, Bao H (2011) Robust Bilayer segmentation and motion/depth estimation with a handheld camera. IEEE Transactions on Pattern Analysis and Machine Intelligence 33(3):603–617

    Article  MATH  Google Scholar 

  52. Zhang X, Weiming Hu, Wei Qu, Maybank S (2010) Multiple object tracking via species-based particle swarm optimization. IEEE Transactions on Circuits and Systems for Video Technology 20(11):1590–1602

    Article  Google Scholar 

  53. Zhong Yu, Jain AK, Dubuisson-Jolly M-P (2000) Object tracking using deformable templates. IEEE Trans on Pattern Analysis and Machine Intelligence 22(5):544–549

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastasios Doulamis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doulamis, A. Event-driven video adaptation: A powerful tool for industrial video supervision. Multimed Tools Appl 69, 339–358 (2014). https://doi.org/10.1007/s11042-012-0992-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-012-0992-5

Keywords

Navigation