Multimedia Tools and Applications

, Volume 57, Issue 3, pp 605–631 | Cite as

On the performance of scalable video coding for VBR TV channels transport in multiple resolutions and qualities

  • Zlatka K. AvramovaEmail author
  • Danny De Vleeschauwer
  • Pedro Debevere
  • Sabine Wittevrongel
  • Peter Lambert
  • Rik Van de Walle
  • Herwig Bruneel


Video broadcast operators target a variety of receiving devices of different resolutions and processing capabilities. In such a heterogeneous TV network, the transport resource consumption is likely to increase. In this paper we estimate the required transport capacity for a broadcast TV network taking into account parameters as currently proposed in standardization bodies. We target constant video quality, hence the TV channel has variable bit rate (VBR). We consider a multicast-based transport system where only the required versions of a TV channel are transported; this leads to fluctuation of the consumed transport capacity over time. The main focus in this paper is on the comparison of a simulcast and a scalable video coding (SVC) transport scheme in several realistic examples with different encoding modes, including spatial and/or quality scalability. To estimate the required transport capacity for simulcast and SVC, we use a comprehensive toolkit based on a Gaussian approximation of the capacity demand. In order to obtain realistic input values for our calculation tools, we characterize the fluctuations of the bit rate associated with a TV channel by encoding a representative set of video clips. Based on the considered realistic examples, we explore under what conditions either the simulcast or the SVC transport scheme is more efficient.


H.264 SVC Network design Capacity estimation TV Multi-resolution 


  1. 1.
    Advanced Video Coding for Generic Audiovisual Services (Vers.1: May 2003, Vers.2: May 2004, Vers.3: Mar. 2005, Vers.4: Sept. 2005, Vers.5 and Vers.6: June 2006, Vers.7: Apr. 2007, Vers.8 (including SVC extension): Nov. 2007). ITU-T Recommendation H.264 and ISO/IEC 14496-10 (MPEG-4 AVC)Google Scholar
  2. 2.
    Avramova Z, De Vleeschauwer D, Laevens K, Wittevrongel S, Bruneel H (2008) Modelling H.264/AVC VBR video traffic: comparison of a Markov and a self-similar source model. Telecommun Syst 39(2):91–102CrossRefGoogle Scholar
  3. 3.
    Avramova Z, De Vleeschauwer D, Spaey K, Wittevrongel S, Bruneel H, Blondia C (2007) Comparison of simulcast and scalable video coding in terms of required capacity in IPTV network. In: Proceedings of the 16th International Packet Video Workshop (PV07)Google Scholar
  4. 4.
    Avramova Z, De Vleeschauwer D, Wittevrongel S, Bruneel H (2009) Capacity gain of mixed multicast/unicast transport schemes in a TV distribution network. IEEE Trans Multimedia 11(5):918–931CrossRefGoogle Scholar
  5. 5.
    Avramova Z, De Vleeschauwer D, Wittevrongel S, Bruneel H (2009) Dimensioning of a multi-rate network transporting variable bit rate TV channels. In: Proceedings of the International Conference on Communications (ICC09): 1224–1229Google Scholar
  6. 6.
    Description of DVB-H mobile TV trials and services Available on-line at
  7. 7.
    Jarnikov D, Lukkien J, Van den Stok P (2005) A framework for video streaming to resource-constrained terminals. Embedded and Ubiquitous Computing, LNCS 3824:930–939Google Scholar
  8. 8.
    Joint Scalable Video Model (JSVM) v9_12 Available on-line at
  9. 9.
    Lotfallah O, Van der Auwera G, Reisslein M (2007) Adaptive bitstream switching of scalable video. Signal Process, Image Commun 22(10):809–832CrossRefGoogle Scholar
  10. 10.
    Marpe D, Schwarz H, Wiegand T (2003) Context-based adaptive binary arithmetic coding in the H.264/AVC video compression standard. IEEE Trans Circuits Syst Video Technol 13(7):620–636CrossRefGoogle Scholar
  11. 11.
    McCanne S, Van Jacobson, Vetterli M (1996) Receiver-driven Layered Multicast. In: Proceedings of ACM SIGCOMM’96:117–130Google Scholar
  12. 12.
    Proposal to DVB for study work into scalable video coding for IPTV (2007) DVB-CM-AVC Document CM-AVC0128Google Scholar
  13. 13.
    Sun S, Reichel J (2006) AHG report on spatial scalability resampling. Report JVT-R006 of the 18th Meeting of the Joint Video TeamGoogle Scholar
  14. 14.
    Zipf J (1932) Selective studies and the principle of relative frequency in languageGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Zlatka K. Avramova
    • 1
    Email author
  • Danny De Vleeschauwer
    • 2
  • Pedro Debevere
    • 3
  • Sabine Wittevrongel
    • 1
  • Peter Lambert
    • 3
  • Rik Van de Walle
    • 3
  • Herwig Bruneel
    • 1
  1. 1.SMACS Research Group, TELIN, Faculty of EngineeringGhent UniversityGhentBelgium
  2. 2.Alcatel-Lucent BellBell LabsAntwerpBelgium
  3. 3.Multimedia Lab Research Group, IBBTGhent UniversityGhentBelgium

Personalised recommendations