Multimedia Tools and Applications

, Volume 53, Issue 2, pp 459–479 | Cite as

Voronoi-based multi-level range search in mobile navigation

  • Kefeng XuanEmail author
  • Geng Zhao
  • David Taniar
  • Maytham Safar
  • Bala Srinivasan


Due to the universality and importance of range search queries processing in mobile and spatial databases as well as in geographic information system (GIS), numerous approaches on range search algorithms have been proposed in recent years. But ordinary range search queries focus only on a specific type of point objects. For queries which require to retrieve objects of interest locating in a particular region, ordinary range search could not get the expected results. In addition, most existing range search methods need to perform a searching on each road segments within the pre-defined range, which decreases the performance of range search. In this paper, we design a weighted network Voronoi diagram and propose a high-performance multilevel range search query processing that retrieves a set of objects locating in some specified region within the searching range. The experimental results show that our proposed algorithm runs very efficiently and outperforms its main competitor.


Mobile databases Voronoi diagram Range queries Mobile navigation 



This research has been partially funded by the Australian Research Council (ARC) Discovery Project (Project No: DP0987687).


  1. 1.
    Aleksy M, Butter T, Schader M (2008) Architecture for the development of context-sensitive mobile applications. Mobile Inform Syst 4(2):105–117Google Scholar
  2. 2.
    Ash PF, Bolker ED (2004) Generalized Dirichlet tessellations. Geom Dedic 20(2):209–243MathSciNetGoogle Scholar
  3. 3.
    Bayer R (1997) The universal b-tree for multidimensional indexing: general concepts. In: Proc. of worldwide computing and its applications (WWCA). Springer, New York, pp 198–209Google Scholar
  4. 4.
    Beckley DA, Evens MW, Raman VK (1985) Multikey retrieval from K-d trees and quad-trees. In: Proc. of ACM SIGMOD. ACM, New York, pp 291–301Google Scholar
  5. 5.
    Cantone D, Ferro A, Pulvirenti A, Recupero DR, Shasha D (2005) Antipole tree indexing to support range search and k-nearest neighbor search in metric spaces. IEEE Trans Knowl Data Eng 17(4):535–550CrossRefGoogle Scholar
  6. 6.
    Dijkstra EW (1959) A note on two problems in connection with graphs. Numer Math 1(22):269–271CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Goh J, Taniar D (2004) Mining frequency pattern from mobile users. In: Proc. of 8th knowledge-based intelligent information and engineering systems (KES). Springer, Wellington, pp 795–801CrossRefGoogle Scholar
  8. 8.
    Goh J, Taniar D (2005) Mining parallel patterns from mobile users. Int J Bus Data Commun Netw 1(1):50–76CrossRefGoogle Scholar
  9. 9.
    Goh JY, Taniar D (2004) Mobile data mining by location dependencies. In: Proc. of 5th intelligent data engineering and automated learning (IDEAL). Springer, Wellington, pp 225–231Google Scholar
  10. 10.
    Gulliver SR, Ghinea G, Patel M, Serif T (2007) A context-aware tour guide: user implications. Mobile Inform Syst 3(2):71–88Google Scholar
  11. 11.
    Guttman A (1984) R-trees: a dynamic index structure for spatial searching. In: Proc. of ACM SIGMOD. ACM, New York, pp 47–57Google Scholar
  12. 12.
    Jayaputera J, Taniar D (2005) Data retrieval for location-dependent queries in a multi-cell wireless environment. Mobile Inform Syst 1(2):91–108Google Scholar
  13. 13.
    Kolahdouzan MR, Shahabi C (2004) Voronoi-based k nearest neighbor search for spatial network databases. In: Proc. of 30th VLDB. Morgan Kaufmann, Toronto, pp 840–851CrossRefGoogle Scholar
  14. 14.
    Kolahdouzan MR, Shahabi C (2005) Alternative solutions for continuous k nearest neighbor queries in spatial network databases. GeoInformatica 9(4):321–341CrossRefGoogle Scholar
  15. 15.
    Muhammad RB (2009) Range assignment problem on the Steiner tree based topology in ad hoc wireless networks. Mobile Inform Syst 5(1):53–64Google Scholar
  16. 16.
    Okabe A, Boots B, Sugihara K, Chiu SN (2000) Spatial tessellations: concepts and applications of Voronoi diagrams, 2nd edn. Wiley, West SussexzbMATHGoogle Scholar
  17. 17.
    Papadias D, Zhang J, Mamoulis N, Tao Y (2003) Query processing in spatial network databases. In: Proc. of 29th VLDB. Morgan Kaufmann, Berlin, pp 802–813CrossRefGoogle Scholar
  18. 18.
    Safar M (2005) K nearest neighbor search in navigation systems. Mobile Inform Syst 1(3):207–224Google Scholar
  19. 19.
    Safar M, Ebrahimi D (2006) eDAR algorithm for continuous KNN queries based on pine. Int J Inform Technol Web Eng 1(4):1–21CrossRefGoogle Scholar
  20. 20.
    Sharifzadeh M, Shahabi C (2008) Processing optimal sequenced route queries using Voronoi diagrams. GeoInformatica 12(4):411–433CrossRefGoogle Scholar
  21. 21.
    Taniar D, Goh J (2007) On mining movement pattern from mobile users. Int J Distrib Sensor Netw 3(1):69–86CrossRefGoogle Scholar
  22. 22.
    Taniar D, Rahayu JW (2002) A taxonomy of indexing schemes for parallel database systems. Distrib Parallel Databases 12(1):73–106CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Taniar D, Rahayu JW (2004) Global parallel index for multi-processors database systems. Inf Sci 165(1–2):103–127CrossRefzbMATHGoogle Scholar
  24. 24.
    Tran QT, Taniar D, Safar M (2009) Reverse k nearest neighbor and reverse farthest neighbor search on spatial networks. In: Hameurlain A (ed) Large-scale, T, data- and knowledge-centered systems, vol 1. Springer, Berlin, pp 353–372CrossRefGoogle Scholar
  25. 25.
    Waluyo AB, Rahayu JW, Taniar D, Srinivasan B (2009) Mobile service oriented architectures for NN-queries. J Netw Comput Appl 32(2):434–447CrossRefGoogle Scholar
  26. 26.
    Waluyo AB, Srinivasan B, Taniar D (2003) Optimal broadcast channel for data dissemination in mobile database environment. In: Proc. of 5th advanced parallel programming technologies (APPT). Springer, Xiamen, pp 655–664CrossRefGoogle Scholar
  27. 27.
    Waluyo AB, Srinivasan B, Taniar D (2004) A taxonomy of broadcast indexing schemes for multi channel data dissemination in mobile database. In: Proc. of 18th advanced information networking and applications (AINA). IEEE Computer Society, Fukuoka, Japan, pp 213–218Google Scholar
  28. 28.
    Waluyo AB, Srinivasan B, Taniar D (2005) Research on location-dependent queries in mobile databases. Comput Syst Sci Eng 20(2):77–93Google Scholar
  29. 29.
    Xuan K, Zhao G, Taniar D, Srinivasan B, Safar M, Gavrilova M (2009) Continuous range search based on network Voronoi diagram. Int J Grid Util Comput 1(4):328–335CrossRefGoogle Scholar
  30. 30.
    Xuan K, Zhao G, Taniar D, Srinivasan B, Safar M, Gavrilova M (2009) Network Voronoi diagram based range search. In: Proc. of 23rd advanced information networking and applications (AINA). IEEE Computer Society, Bradford, pp 741–748CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Kefeng Xuan
    • 1
    Email author
  • Geng Zhao
    • 1
  • David Taniar
    • 1
  • Maytham Safar
    • 2
  • Bala Srinivasan
    • 1
  1. 1.Clayton School of Information TechnologyMonash UniversityMelbourneAustralia
  2. 2.Computer Engineering DepartmentKuwait UniversityKuwait CityKuwait

Personalised recommendations