Skip to main content
Log in

Structural States of Steel 316L in the Zone of Welded Joint

  • WELDED JOINTS
  • Published:
Metal Science and Heat Treatment Aims and scope

The structure of a welded joint of stainless steel 316L is studied by the methods of scanning electron microscopy including microprobe x-ray spectrum analysis and diffraction of backscattered electrons (EBSD). It is shown that a double-phase structure forms in the region of the weld including high-temperature δ-ferrite and austenite. The austenite and the ferrite undergo recrystallization in direction \(\langle 100\rangle \) parallel to the heat removal. The presence of high-temperature δ-ferrite in the steel results in nonuniform distribution of the alloying elements (Cr, Ni, Mo) and in appearance of phase boundaries, which can reduce the corrosion resistance of the welded joint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. N. M. Beskorovainykh, B. A. Kalin, P. A. Platonov, and I. I. Chernov, Structural Materials of Nuclear Reactors [in Russian], Energoatomizdat, Moscow (1995), 704 p.

    Google Scholar 

  2. I. I. Novikov, The Theory of Heat Treatment of Metals [in Russian], Metallurgiya, Moscow (1978), 390 p.

    Google Scholar 

  3. B. A. Kolachev, V. I. Elagin, and V. A. Livanov, The Physical Metallurgy and Heat Treatment of Nonferrous Metals and Alloys [in Russian], MISiS, Moscow (2005), 416 p.

    Google Scholar 

  4. A. K. Vershina, N. A. Svidunovich, and D. V. Kuis, Composition, Structure, and Properties of Iron-Based Alloys [in Russian], BGTU, Minsk (2009), 92 p.

  5. R. I. Entin, Transformations of Austenite in Steel [in Russian], Metallurgizdat, Moscow (1960), 263 p.

    Google Scholar 

  6. G. Kraus, Steel: Processing, Structure and Performance, ASM International (2005), 613 p.

  7. R. Fruehan, The Making, Shaping and Treating of Steel, The AISE Steel Foundation (1998), 767 p.

  8. G. Zheng, B. Kelleher, G. Cao, and M. Anderson, “Corrosion of 316 stainless steel in high temperature molten Li2BeF4 (FLiBe) salt,” J. Nuclear Mater. A, 261, 143 – 150 (2015).

    Article  Google Scholar 

  9. S. Santa-Aho, M. Kiviluoma, and T. Jokiaho, “Additive manufactured 3161 stainless-steel samples: microstructure, residual stress and corrosion characteristics after post-processing,” Metals, 11(2), 1 – 16 (2021).

    Article  Google Scholar 

  10. V. Cruz, Q. Chao, and N. Birbilis, “Electrochemical studies on the effect of residual stress on the corrosion of 316L manufactured by selective laser melting,” Corr. Sci., 164, 1 – 33 (2019).

    Google Scholar 

  11. N. Solomon and I. Solomon, “Effect of deformation-induced phase transformation on AISI316 stainless steel corrosion resistance,” U.P.B. Sci. Bull., 72, 197 – 206 (2021).

  12. M. A. Prasad, G. Dharmalingam, and S. Sachin, “Microstructural evaluation of gas nitrided AISI 316 LN austenitic stainless steel,” Mater. Today, Proc., 68, 1887 – 1890 (2022).

    Article  Google Scholar 

  13. A. Ralls, M. Daroonparvar, and S. Sikdar, “Tribological and corrosion behavior of high pressure cold sprayed duplex 316L stainless steel,” Trib. Int., 169, 107471 (2022).

    Article  CAS  Google Scholar 

  14. H. Khosrovaninezhad, M. Shamanian, and A. Rezeaeian, “Insight into the effect of weld pitch on the microstructure-properties relationships of St37/AISI316 steels dissimilar welds processed by friction stir welding,” Mater. Charact., 177, 1 – 15 (2021).

    Article  Google Scholar 

  15. M. P. Prabakaran and G. R. Kannan, “Optimization of laser welding process parameters in dissimilar joint of stainless steel AISI316/AISI1018 low carbon steel to attain the maximum level of mechanical properties through,” Opt. Laser Technol., 112, 314 – 322 (2019).

    Article  CAS  Google Scholar 

  16. A. Khodadadi, M. Shamanian, and F. Karimzadeh, “Microstructure and mechanical properties of dissimilar friction stir spot welding between St37 steel and 304 stainless steel,” Eng. Perform., 26, 2847 – 2858 (2017).

    Article  CAS  Google Scholar 

  17. V. V. Berezovskaya and A. V. Berezovskiy, Corrosion-Resistant Steels and Alloys [in Russian], UrFU, Ekaterinburg (2019), 244 p.

  18. I, V. Semenova, G. M. Florianovich, and A. V. Khoroshilov, Corrosion and Protection of Metals [in Russian], FIZMATLIT, Moscow (2002), 336 p.

  19. T. Rodrigues, J. Shen, D. Escobar, and V. Duarte, “Effect of heat treatments on 316 stainless steel parts fabricated by wire and arc additive manufacturing: Microstructure and synchrotron x-ray diffraction analysis,” Additive Manuf., 48, 102428 (2021).

    Article  CAS  Google Scholar 

  20. Q. He, F. Pan, D. Wang, and H. Liu, “Microstructure and properties of 316L stainless steel foils for pressure sensor of pressurized water reactor,” Nucl. Eng. Technol., 53, 172 – 177 (2021).

    Article  CAS  Google Scholar 

  21. F. Villaret, X. Boulnat, P. Aubryc, and J. Zollinger, “Modelling of delta ferrite to austenite transformation kinetics in martensitic steels: Application to rapid cooling in additive manufacturing,” Materialia, 18, 1 – 9 (2021).

    Article  Google Scholar 

  22. R. Shukla, S. K. Ghosh, D. Chakrabarti, and S. Chatterjee, “Microstructure, texture, property relationship in thermo-mechanically processed ultra-low carbon micro alloyed steel for pipe line application,” Mater. Sci. Eng., 587, 201 – 208 (2013).

    Article  CAS  Google Scholar 

  23. Yu. Z. Babaskin, Structure and Properties of Cast Steel [in Russian], Naukova Dumka (1980), 240 p.

  24. M. A. Zorina, L. M. Lobanov, E. A. Makarova, and G. M. Rusakov, “Texture of primary recrystallization in fcc-metals with low energy of stacking fault,” Metalloved. Term. Obrab. Met., No. 5(755), 55 – 63 (2018).

  25. M. L. Lobanov, V. I. Pastukhov, and A. A. Redikultsev, “Crystallographic features of decomposition of γ-phase in austenitic corrosion-resistant steel,” Metalloved. Term. Obrab. Met., No. 7(781), 5 – 11 (2020).

  26. M. L. Lobanov, V. I. Pastukhov, and A. A. Redikultsev, “Effect of special boundaries on γ → α transformation in austenitic stainless steel,” Fiz. Met. Metalloved., 122(4), 424 – 430 (2021).

    Google Scholar 

  27. G. Kurdjumow and G. Sachs, “Über den Mechanismus der Stalhärtung,” Zeitschrift für Phys., 64, 325 – 343 (1930).

    Article  Google Scholar 

  28. M. Liu, Yu. Zhang, X.Wang and B. Beausir, “Crystal defect associated selection of phase transformation orientation relationships (ORs),” Acta Mater., 152, 315 – 326 (2018).

    Article  CAS  Google Scholar 

  29. M. L. Lobanov, M. A. Zorina, P. L. Reznik, and V. I. Pastukhov, “Specific features of crystallographic texture formation in bcc–fcc transformation in extruded brass,” J. Alloys Compd., 882, 160 – 231 (2021).

    Article  Google Scholar 

  30. H. Kitahara, R. Ueji, N. Tsuji, and Y. Minamino, “Crystallographic features of lath martensite in low-carbon steel,” Acta Mater., 54, 1279 – 1288 (2006).

    Article  CAS  Google Scholar 

  31. N. Nakada, H. Ito, and Y. Matsuoka, “Deformation-induced martensitic transformation behavior in cold-rolled and cold-drawn type 316 stainless steels,” Acta Mater., 58, 895 – 903 (2010).

    Article  CAS  Google Scholar 

  32. V. I. Pastukhov, A. V. Kozlov, and M. L. Lobanov, “Crystallographic peculiarities of shear α – γ transformation in austenitic stainless steel in the high temperature area,” Trans. Tech. Publ., Solid State Phenom., 284, 253 – 258 (2018).

  33. L. A. Lobanova and M. L. Lobanov, “Optimization of chemical composition of supermartensitic stainless steel using thermodynamic computations,” Vestn. Yuzh.-Ural. Univ., Ser. Metall., 22(2), 14 – 22 (2022).

  34. S. Suwas and R. K. Ray, Crystallographic Texture of Materials, Springer (2014), 260 p.

Download references

The study has been financed by Grant No. 23-29-00615 of the Russian Scientific Foundation, https://rscf.ru/project/23-29-00615/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Yu. Yarkov.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 7, pp. 64 – 68, July, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yarkov, V.Y., Pastukhov, V.I., Golosov, O.A. et al. Structural States of Steel 316L in the Zone of Welded Joint. Met Sci Heat Treat 65, 454–459 (2023). https://doi.org/10.1007/s11041-023-00954-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-023-00954-7

Key words

Navigation