Skip to main content
Log in

Effect of Heat Treatment on the Hardness and Electrical Connectivity of an Aluminum Composite Reinforced with Al2O3 Nanoparticles

  • Published:
Metal Science and Heat Treatment Aims and scope

The effect of heat treatment modes on the microstructure, microhardness and electrical conductivity of an aluminum metal matrix composite (MMC) reinforced with Al2O3 nanoparticles in an amount of 2.5 wt.% is studied. The MMC is treated by quenching from 510, 530 or 550°C and subsequent artificial aging at 140, 160, 180, 200 or 220°C. The cast composite has a Vickers microhardness of 36 HV and an electrical conductivity of 45% IACS. The heat treatment raises the hardness and the conductivity of the composite. Quenching from 530°C and aging at 200°C produce the highest microhardness (46 HV ); quenching from 530°C and aging at 180°C produce the highest conductivity (50% IACS).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. ASM Handbook “Aluminum and Aluminum Alloy Specialty Handbook,” ASM International, Materials Park, OH, USA (2002), 784 p.

  2. M. Cai, D. P. Field, and G. W. Lorimer, “A systematic comparison of static and dynamic aging of two Al – Mg – Si alloys,” J. Mater. Sci. Eng. A, A373, 65 – 71 (2004).

    Article  CAS  Google Scholar 

  3. Dursun Özyürek, Tansel Tuncay, and Hasan Kaya, “The effects of T5 and T6 heat treatments on wear behaviour of AA6063 alloy,” High Temp. Mater. Process., 33(3), 231 – 237 (2014).

    Article  Google Scholar 

  4. M. S. Salleh, H. Hashim, M. Z. Omar et al., “T6 heat treatment optimization of thixoformed LM4 aluminium alloy using response surface methodology,” Malays. J. Compos. Sci. Manufact., 3(1), 1 – 13 (2020).

    Google Scholar 

  5. S. K. Tiwari, S. Soni, R. S. Rana, and A. Singh, “Effect of heat treatment on mechanical properties of aluminium alloy-fly ash metal matrix composite,” Mater. Today, Proc., 4(2), 3458 – 3465 (2017).

    Article  Google Scholar 

  6. G. Pilania, B. J. Thijsse, R. G. Hoagland, et al., “Revisiting the Al/Al2O3 interface: coherent interfaces and misfit accommodation,” Sci. Rep., 4(1), 4485 (2014).

    Article  Google Scholar 

  7. M. Kok, “Production and mechanical properties of Al2O3 particle-reinforced 2024 aluminium alloy composites,” J. Mater. Process. Technol., 161, 381 – 387 (2005).

    Article  CAS  Google Scholar 

  8. S. A. Sajjadi, H. R. Ezatpour, and P. M. Torabi, “Comparison of microstructure and mechanical properties of A356 aluminum alloy/Al2O3 composites fabricated by stir and compo-casting processes,” Mater. Des., 34, 106 – 111 (2012).

    Article  CAS  Google Scholar 

  9. K. Vineeth Kumar and L. Jayahari, “Study of mechanical properties and wear behaviour of aluminium 6063 matrix composites reinforced with steel machining chips,” Mater. Today, Proc., 5(9), 20285 – 20291 (2018).

  10. Yu. A. Sokolov, N. V. Pavlushin, and S. Yu. Kondrat’ev, “New additive technologies based on ion beams,” Russ. Eng. Res., 36(12), 1012 – 1016 (2016).

    Article  Google Scholar 

  11. A. I. Rudskoi, S. Yu. Kondrat’ev, Yu. A. Sokolov, and V. N. Kopaev, “Simulation of the layer-by-layer synthesis of articles with an electron beam,” Tech. Phys., 60(11), 1663 – 1669 (2015).

  12. A. I. Rudskoy, S. Yu. Kondrat’ev, and Yu. A. Sokolov, “New approach to synthesis of powder and composite materials by electron beam. Part 1. Technological features of the process,” Met. Sci. Heat Treat., 58(1 – 2), 27 – 32 (2016).

  13. A. D. Sable and S. D. Deshmukh, “Preparation of MMCs by stir casting method,” IJMET, 3, 22 – 27 (2012).

    Google Scholar 

  14. B. R. Reddy and C. Srinivas, “Fabrication and characterization of silicon carbide and fly ash reinforced aluminium metal matrix hybrid composites,” Mater. Today, Proc., 5(2), 8374 – 8381 (2018).

    Article  CAS  Google Scholar 

  15. S. Gopalakrishnan and N. Murugan, “Production and wear characterisation of AA 6061 matrix titanium carbide particulate reinforced composite by enhanced stir casting method,” Compos. B. Eng., 43(2), 302 – 308 (2012).

    Article  CAS  Google Scholar 

  16. M. Singla, D. D. Dwivedi, L. Singh, and V. Chawla, “Development of aluminium based silicon carbide particulate metal matrix composite,” JMMCE, 8(6), 455 – 467 (2009).

    Article  Google Scholar 

  17. A. Dehghan Hamedan and M. Shahmiri, “Production of A356 – 1 wt% SiC nanocomposite by the modified stir casting method,” Mater. Sci. Eng. A, 556, 921 – 926 (2012).

  18. K. Praveen, J. Satheesh, G. Antil Kumar, and T. Madhusudhan, “A review of effects of reinforcement on mechanical and tribological behavior of aluminum based metal matrix composites,” Int. Res. J. Eng. Technol., 3(4), 2411 – 2416 (2016).

  19. T. M. Azeez, M. Lateef, and A. Adeleke, “Effect of heat treatment on micro hardness and microstructural properties of Al6063 alloy reinforced with silver nanoparticles (AgNps),” IOP Conf. Ser., Mater. Sci. Eng., 1107, 012013 (2021).

  20. S. Pichumani, R. Srinivasan, and V. Ramamoorthi, “Investigation on mechanical behavior and material characteristics of various weight composition of SiCp reinforced aluminium metal matrix composite,” IOP Conf. Ser., Mater. Sci. Eng., 310(1), 012082 (2018).

  21. “Conductivity and resistivity values for aluminum & alloys,” in: Eddy Current Testing Manual on Eddy Current Method Compiled by Eddy Current Technology Incorporated, TO 33B-1-1, NAVAIR 01-1A-16-1, TM 1-1500-335-23, NDT Supply. Com, Inc.

  22. P. O. Babalola, O. Kilanko, S. O. Banjo, et al. “Reinforcement of AA1237 with Al2O3 to form metal matrix composite,” IOP Conf. Ser., Mater. Sci. Eng., 1107(1), 012006 (2021).

  23. D. Diehl, C. Köhler, E. L. Schneider, et al., “Eddy current at high temperatures for in-situ control of heat treatment precipitation in hardening aluminum alloys,” IEEE Sensors J., 20(23), 14514 – 14520 (2020).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md Jalal Uddin Rumi.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 7, pp. 59 – 63, July, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rumi, M.J.U., Rahman, M.M. Effect of Heat Treatment on the Hardness and Electrical Connectivity of an Aluminum Composite Reinforced with Al2O3 Nanoparticles. Met Sci Heat Treat 65, 450–453 (2023). https://doi.org/10.1007/s11041-023-00953-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-023-00953-8

Keywords

Navigation