Skip to main content
Log in

Effect of Heat Treatment on Two-Phase Ti – 22Al – 25Nb Alloy Phase Composition and Microhardness

  • TITANIUM AND ITS ALLOYS
  • Published:
Metal Science and Heat Treatment Aims and scope

The effect of heat treatment on evolution of the phase composition and microhardness of orthorhombic alloy Ti – 22Al – 25Nb based upon a Ti2AlNb phase (O-phase) is studied. X-ray diffraction, scanning electron microscopy, and electron back-scatter diffraction are used to study alloy phase composition after different treatments. It is shown that the alloy structure contains β/B2- and O-phases, the proportion of which changes on heat treatment. Microstructure and Vickers microhardness of alloy Ti – 22Al – 25Nb are shown to be interrelated in different states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

Notes

  1. Alloy element content provided in atomic fractions expressed as a percentage.

References

  1. D. He, L. Li, W. Guo, et al., “Improvement in oxidation resistance of Ti2AlNb alloys at high temperatures by laser shock peening,” Corros. Sci., 184, 109364(2021).

    Article  CAS  Google Scholar 

  2. K. Goyal and N. Sardana, “Mechanical properties of the Ti2AlNb intermetallic: a review,” Trans. Indian Inst. Met., 74, 1839 – 1853(2021).

    Article  Google Scholar 

  3. D. Avinashand S. P. Leo Kumar, “Investigations on surface-integrity and mechanical properties of biocompatible grade Ti – 6Al – 7Nb alloy,” Mater. Technol. (NYNY), 37(1), 1 – 9 (2021).

    Google Scholar 

  4. K. S. Senkevich, O. Z. Pozhoga, E. A. Kudryavtsev, and V. V. Zasypkin, “The effect of hydrogenation on the fracture of Ti2AlNb-based alloy during ball milling,” J. Alloys Compd., 902, 163794 (2022).

    Article  CAS  Google Scholar 

  5. Y. Sun, H. Zhang, Z.-p. Wan, et al., “Establishment of a novel constitutive model considering dynamic recrystallization behaviour of Ti – 22Al – 25Nb alloy during hot deformation,” T. Nonferr. Metal. Soc., 29, 546 – 557 (2019).

    Article  CAS  Google Scholar 

  6. L. Shao, S. Wu, A. Datye, et al., “Microstructure and mechanical properties of ultrasonic pulse frequency tungsten inert gas welded Ti – 22Al – 25Nb (at.%) alloy butt joint,” J. Mater. Process. Technol., 259, 416 – 423 (2018).

    Article  CAS  Google Scholar 

  7. Y. Longchuan, S. Yan, D. Yulei, and L. Wenhe, “Structural features and mechanical properties of as-cast Ti – 22Al – 25Nb alloy,” Rare Metal Mat. Eng., 49, 42 – 47(2020).

    Google Scholar 

  8. W. Wang, W. Zeng, C. Xue, et al., “Microstructural evolution, creep, and tensile behavior of a Ti – 22Al – 25Nb (at.%) orthorhombic alloy,” Mater. Sci. Eng. A, 603A, 176 – 184(2014).

    Article  Google Scholar 

  9. B. Shao, D. Shan, B. Guo, and Y. Zong, “Plastic deformation mechanism and interaction of B2, α2, and O phases in Ti 22Al 25Nb alloy at room temperature,” Int. J. Plast., 113, 18 – 34 (2019).

    Article  CAS  Google Scholar 

  10. W. Wang, W. Zeng, C. Xue, et al., “Quantitative analysis of the effect of heat treatment on microstructural evolution and microhardness of an isothermally forged Ti – 22Al – 25Nb (at.%) orthorhombic alloy,” Intermetallics, 45, 29 – 37 (2014).

    Article  Google Scholar 

  11. Shao, S. Wu, S. Zhao, et al., “Evolution of microstructure and microhardness of the weld simulated heat-affected zone of Ti – 22Al – 25Nb (at.%) alloy with continuous cooling rate,” J. Alloys Compd., 744, 487 – 492 (2018).

  12. J.-R. Chen and W.-T. Tsai, “In situ corrosion monitoring of Ti – 6Al – 4V alloy in H2SO4/HCl mixed solution using electrochemical AFM,” Electrochim. Acta, 56, 1746 – 1751 (2011).

    Article  CAS  Google Scholar 

  13. C. Xue, W. Zeng, B. Xu, et al., “B2 grain growth and particle pinning effect of Ti – 22Al – 25Nb orthorhombic intermetallic alloy during heating process,” Intermetallics, 29, 41 – 47 (2012).

    Article  CAS  Google Scholar 

  14. S. R. Dey, S. Suwas, J. J. Fundenberger, and R. K. Ray, “Evolution of crystallographic texture and microstructure in the orthorhombic phase of a two-phase alloy Ti – 22Al – 25Nb,” Intermetallics, 17, 622 – 633 (2009).

    Article  Google Scholar 

  15. V. A. Esin, R. Mallick, M. Dadé, et al., “Combined synchrotron x-ray diffraction, dilatometry and electrical resistivity in situ study of phase transformations in a Ti2AlNb alloy,” Mater. Charact., 169, 110654 (2020).

    Article  CAS  Google Scholar 

  16. P. Zhang,W. Zeng, R. Jia, et al., “Tensile behavior and deformation mechanism for Ti – 22Al – 25Nb alloy with lamellar O microstructures,” Mater. Sci. Eng. A, 803A, 140492 (2021.)

    Article  Google Scholar 

  17. L. Germann, D. Banerjee, J. Y. Guédou, and J. L. Strudel, “Effect of composition on the mechanical properties of newly developed Ti2AlNb-based titanium aluminide,” Intermetallics, 13, 920 – 924 (2005).

    Article  CAS  Google Scholar 

  18. Y. X.Wang, K. F. Zhang, and B. Y. Li, “Microstructure and high temperature tensile properties of Ti22Al25Nb alloy prepared by reactive sintering with element powders,” Mater. Sci. Eng. A, 608, 229 – 233 (2014).

    Article  CAS  Google Scholar 

  19. C. J. Boehlert, “Part III. The tensile behavior of Ti – Al – Nb O + Bcc orthorhombic alloys,” Metall. Mater. Trans., A32, 1977 – 1988 (2001).

    Article  Google Scholar 

  20. H. Zhang, N. Yan, H. Liang, and Y. Liu, “Phase transformation and microstructure control of Ti2AlNb-based alloys: a review,” J. Mater. Sci. Technol., 80, 203 – 216 (2021).

    Article  CAS  Google Scholar 

  21. Z. Q. Bu, Y. G. Zhang, L. Yang, et al., “Effect of cooling rate on phase transformation in Ti2AlNb alloy,” J. Alloys Compd., 893, 162364 (2022).

    Article  CAS  Google Scholar 

  22. D. Li, S. Hu, J. Shen, et al., “Microstructure and mechanical properties of laser-welded joints of Ti – 22Al – 25Nb/TA15 dissimilar titanium alloys,” J. Mater. Eng. Perform., 25, 1880 – 1888 (2016).

    Article  CAS  Google Scholar 

  23. H. Zhang, M. Yang, Y. Xu, et al., “Constitutive behavior and hotwork ability of a hot isostatic pressed Ti – 22Al – 25Nb alloy during hot compression,” J. Mater. Eng. Perform., 28, 6816 – 6826(2019).

    Article  CAS  Google Scholar 

  24. C. Leyens, “Environmental effects on orthorhombic alloy Ti – 22Al – 25Nb in air between 650 and 1000°C,” Oxid. Met., 54, 475 – 503 (2000).

    Google Scholar 

Download references

This work was supported by the Institute of Technology of Aircraft Engine, Beijing Research Institute of Aviation Engineering. This work was financially supported by the Science and Technology Plan Project of Taizhou (No. 21gya23 and No. 2002gy06). The financial support was also from Zhejiang Public Welfare Technology Application Research Project (No. LGC20E010003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liu Zu.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 5, pp. 42 – 46, May, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, L., Chen, Y., Datye, A. et al. Effect of Heat Treatment on Two-Phase Ti – 22Al – 25Nb Alloy Phase Composition and Microhardness. Met Sci Heat Treat 65, 304–308 (2023). https://doi.org/10.1007/s11041-023-00930-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-023-00930-1

Key words

Navigation