Skip to main content
Log in

Effect of Alloying Elements and Technological Parameters of Austempering on the Structure and Mechanical Properties of Ductile Cast Iron (ADI)

  • THERMAL AND THERMOMECHANICAL TREATMENT
  • Published:
Metal Science and Heat Treatment Aims and scope

The effect of additions of alloying elements (Mo and Ni), austempering time and thickness of the product section on the mechanical properties of industrial ductile iron of grade GGG-70 (EN-GJS-700-2) is studied. Standard keel blocks and crankshafts have been produced by static sand casting from unalloyed, alloyed with 0.2% Mo and 0.2% Mo + 0.6% Ni ductile iron. Austempering is carried out at 350 °C for 90, 120, 150, and 180 min in a salt bath. It is shown that the alloying has a significant effect on the ability of cast iron to austempering and its mechanical properties after heat treatment. Alloyed cast iron has the best combination of ultrahigh yield and tensile strength with high ductility. After austempering, crankshafts alloyed with 0.2% Mo + 0.6% Ni have a typical ductile iron ADI structure even in the thickest sections (58-mm-thick main bearing center) with a uniform hardness distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

References

  1. J. Janowak and B. Gundlach, “Development of a ductile iron for commercial austempering,” Trans. Amer. F, 91, 377 – 388 (1983).

    CAS  Google Scholar 

  2. J. Yang and S. K. Putatunda, “Effect of microstructure on abrasive wear behavior of austempered ductile iron (ADI) processed by a novel two-step austempering process,” Mater. Sci. Eng. A, 406A, 217 – 228 (2005).

    Article  Google Scholar 

  3. J. Yang and S. K. Putatunda, “Improvement in strength and toughness of austempered ductile cast iron by a novel two-step austempering process,” Mater. Des., 25, 219 – 230 (2004).

    Article  CAS  Google Scholar 

  4. S. K. Putanda, “Development of austempered ductile cast iron (ADI) with simultaneous high yield strength and fracture toughness by a novel two-step austempering process,” Mater. Sci. Eng. A, 315A, 70 – 80 (2001).

    Article  Google Scholar 

  5. D. Rajnovic, O. Eric, and L. Sidjanin, “The standard processing window of alloyed ADI materials,” Kovove Mater., 50(3), 199 – 208 (2012).

    Article  CAS  Google Scholar 

  6. L. L. T. Boneti, M. F. Hupalo, S. Vurobi junio, and A. M. Rosario, “Influence of casting heterogeneities on microstructure and mechanical properties of austempered ductile iron (ADI),” Matéria (Rio de Janeiro), 22(03), E11858 (2017).

  7. J. R. Keough and K. L. Hayrynen, “Automotive applications of austempered ductile iron (ADI): A critical review,” SAE Trans., 109, 344 – 354 (2000).

    Google Scholar 

  8. A. Trudel and M. Gagne, “Effect of composition and heat treatment parameters on the characteristics of austempered ductile irons,” Can. Metall. Quart., 36, 289 – 298 (1997).

    Article  CAS  Google Scholar 

  9. R. C. Voigt and C. Loper, “Austempered ductile iron—process control and quality assurance,” J. Mater. Eng. Perform., 22, 2776 – 2794 (2013).

    Article  CAS  Google Scholar 

  10. L. Meier, M. Hofmann, P. Saal, et al., “In-situ measurement of phase transformation kinetics in austempered ductile iron,” Mater. Charact., 85, 124 – 133 (2013).

    Article  CAS  Google Scholar 

  11. D. Myszka and A. Wieczorek, “An assessment of the applicability of austempered ductile iron containing Mo and Ni for mining machines parts,” Arch. Metall. Mater., 58(3), 953 – 956 (2013).

    Article  CAS  Google Scholar 

  12. X. Li, J. N. Wagner, A Stark, et al., “Carbon redistribution process in austempered ductile iron (ADI) during heat treatment—APT and Synchrotron diffraction study,” Metals, 9, 789 (2019).

    Article  CAS  Google Scholar 

  13. J. Lefevre and K. L. Hayrynen, “Austempered materials for power-train applications,” J. Mater. Eng. Perform., 22, 1914 – 1922 (2013).

    Article  CAS  Google Scholar 

  14. P. Sellamuthu, D. Samuel, D. Dinakaran, et al., “Austempered ductile iron (ADI): influence of austempering temperature on microstructure, mechanical and wear properties and energy consumption,” Metals, 8, 53 (2018).

    Article  Google Scholar 

  15. P. P. Rao and S. K. Putatunda, “Influence of microstructure on fracture toughness of austempered ductile iron,” Metall. Mater. Trans. A, 28(7), 1457 – 1470 (1997).

    Article  Google Scholar 

  16. E. Konca, K. Tur, and E. Koç, “Effects of alloying elements (Mo, Ni, and Cu) on the austemperability of GGG-60 ductile cast iron,” Metals, 7, 320 (2017).

    Article  Google Scholar 

  17. S. Yazdani and R. Elliott, “Influence of molybdenum on austempering behaviour of ductile iron. Part I—Austempering kinetics and mechanical properties of ductile iron containing 0.13% Mo,” Mater. Sci. Tech. Ser., 15(5), 531 – 540 (1999).

    Article  CAS  Google Scholar 

  18. Y. Tanaka and H. Kage, “Development and application of austempered spheroidal graphite cast iron,” Mater. Trans., JIM, 33(6), 543 – 557 (1992).

  19. B. Kovacs, “Development of austempered ductile iron (ADI) for automotive crankshafts,” J. Heat Treat., 5(1), 55 – 60 (1987).

    Article  CAS  Google Scholar 

  20. M. H. Sohi, M. N. Ahmadabadi, and A. B. Vahdat, “The role of austempering parameters on the structure and mechanical properties of heavy section ADI,” J. Mater. Process. Technol., 153 – 154, 203 – 208 (2004).

    Article  Google Scholar 

  21. R. Voigt, “Austempered ductile iron — processing and properties,” Cast Metals, 2(2), 71 – 93 (1989).

    Article  Google Scholar 

  22. A. S. Benam, “Effect of alloying elements on austempered ductile iron (ADI) properties and its process,” China Foundry, 12, 54 – 70 (2015).

    Google Scholar 

  23. U. Batra, S. Ray, and S. R. Prabhakar, “The influence of nickel and copper on the austempering of ductile iron,” J. Mater. Eng. Perform., 13, 64 – 68 (2004).

    Article  CAS  Google Scholar 

  24. U. Batra, S. Ray, and S. Prabhakar, “Impact properties of copper-alloyed and nickel-copper alloyed ADI,” J. Mater. Eng. Perform., 16, 485 – 489 (2007).

    Article  CAS  Google Scholar 

  25. S. McFadden, R. Mishra, R. Valiev, et al., “Low-temperature superplasticity in nanostructured nickel and metal alloys,” Nature, 398, 684 – 686 (1999).

    Article  CAS  Google Scholar 

  26. A. Basso, R. Martinez, and J. Sikora, “Influence of section size on dual phase ADI microstructure and properties: comparison with fully ferritic and fully ausferritic matrices,” Mater. Sci. Tech. Ser., 25, 271 – 1278 (2009).

    Article  Google Scholar 

  27. J. Liu and R. Elliott, “The influence of cast structure on the austempering of ductile iron,” Int. J. Cast Met. Res., 11, 407 – 412 (1999).

    Article  CAS  Google Scholar 

  28. O. Erić,M. Jovanović, L. Šid, et al., “The austempering study of alloyed ductile iron,” Mater. Des., 27(7), 617 – 622 (2006).

    Article  Google Scholar 

  29. C. S. Roberts, “Effect of carbon on the volume fractions and lattice parameters of retained austenite and martensite,” JOM, 5(2), 203 – 204 (1953).

    Article  Google Scholar 

  30. B. D. Cullity, Elements of X-Ray Diffraction, Addison-Wesley Publ., Massachusetts (1956), 534)p.

  31. S. Ö. Erturk and O. Ahmet, “Investigation on the production of solution strengthened ductile iron part grade 500-14,” Bayburt Üniversitesi Fen Bilimleri Dergisi, 3, 106 – 109 (2020).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Yildirim.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 4, pp. 3 – 12, April, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keleş, A., Cengız, R. & Yildirim, M. Effect of Alloying Elements and Technological Parameters of Austempering on the Structure and Mechanical Properties of Ductile Cast Iron (ADI). Met Sci Heat Treat 65, 191–199 (2023). https://doi.org/10.1007/s11041-023-00914-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-023-00914-1

Keywords

Navigation