Skip to main content

Advertisement

Log in

A Composite Based on Niobium η-Carbide: Synthesis, Phase Composition and Properties

  • Published:
Metal Science and Heat Treatment Aims and scope

Composites based on Nb3(Fe, Al)3 C η-carbide obtained by mechanical alloying are studied. Microstructural and quantitative phase analyses are performed. The phase composition, the density and the hardness are determined. It is shown that mechanical fusion of the elemental components in liquid hydrocarbon followed by annealing can be used to synthesize an Nb3(Fe, Al)3 C η-carbide phase. Spark plasma sintering is used to obtain a composite based on η-carbide (60 wt.%). The other phases are Nb5Al3Cx, Nb3Al, Nb, Nb2C and about 5 wt.% graphite nanoplatelets. The composite has a density of 5.11 ± 0.05 g/cm3, a porosity of about 20%, and a hardness of 1.4 ± 0.6 GPa and virtually does not wear under dry friction with hardened steel balls and balls from alloy VK6.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. The authors are grateful to V. F. Lys (UDMFITS URO RAN) for making the tribological tests.

References

  1. A. S. Chaus, M. Braèík, M. Sahul, and V. Tittel, “High-temperature transformation of carbides in skeleton eutectic and delta-eutectoid of cast high-speed steel,” Metal Sci. Heat Treat., 62(7 – 8), 489 – 497 (2020); https://doi.org/https://doi.org/10.1007/s11041-020-00590-5.

    Article  CAS  Google Scholar 

  2. J. M. Zhan, H. Y. Bi, and M. C. Li, “Thermal fatigue behavior of 441 ferritic stainless steel in air and synthetic automotive exhaust gas,” Sci. China Tech. Sci., 65, 169 – 178 (2022); https://doi.org/https://doi.org/10.1007/s11431-021-1865-7.

    Article  CAS  Google Scholar 

  3. J. Hamada, N. Morihiro, and H. Kajimura, “Change of microstructure during thermal fatigue at maximum temperature 1073 K in Nb-added ferritic stainless steels,” J. Japan Inst. Met. Mater., 81(12), 527 – 535 (2017); https://doi.org/https://doi.org/10.2320/jinstmet.JC201701.

    Article  CAS  Google Scholar 

  4. G. Shengda, S. Tao, B. Rui at al., “Synthesis and characterization of WC-6Co nanocrystalline composite powder,” Rare Met. Mater. Eng., 47(7), 1986 – 1992 (2018); https://doi.org/10.1016/S1875-5372(18)30169-3.

  5. Y. J. Kwon, J. S. Yao, S. K. Park, et al., “Crystallization behavior of W35Fe43C22 amorphous alloy powders,” J. Korean Soc. Heat Treat., 31(4), 165 – 170 (2018); https://doi.org/10.12656/jksht.2018.31.4.165.

  6. M. A. Eryomina, S. F. Lomaeva, E. V. Kharanzhevsky, et al., “Phase composition and wear resistance of compacts and coatings based on carbides fabricated in W – Fe – C system by wet mechanical alloying,” Proc. Struct. Integrity, 32, 284 – 290 (2021); https://doi.org/https://doi.org/10.1016/j.prostr.2021.09.040.

    Article  Google Scholar 

  7. N. Fujita, H. K. D. H. Bhadeshia, and M. Kikuchi, “Precipitation sequence in niobium-alloyed ferritic stainless steel,” Model. Simul. Mater. Sci. Eng., 12, 273 – 284 (2004); https://doi.org/https://doi.org/10.1088/0965-0393/12/2/008.

    Article  CAS  Google Scholar 

  8. G. M. Sim, J. C. Ahn, S. C. Hong, et al., “Effect of Nb precipitate coarsening on the high temperature strength in Nb containing ferritic stainless steels,” Mater. Sci. Eng. A, 396, 159 – 165 (2005); https://doi.org/https://doi.org/10.1016/j.msea.2005.01.030.

    Article  CAS  Google Scholar 

  9. A. Malfliet, F. Mompiou, F. Chassagne, et al., “Precipitation in Nb-stabilized ferritic stainless steel investigated with in-situ and ex-situ Transmission Electron Microscopy,” Met. Mater. Trans. A, 42(3333) (2011); https://doi.org/10.1007/s11661-011-0745-5.

  10. E. Reiffenstein, H. Nowitny, and F. Benesovsky, “Einige neue η-carbide. Kurze Mitteilung,” Mh. Chem., 96(5), 1543 – 1546 (1965); https://doi.org/https://doi.org/10.1007/bf00902087.

    Article  CAS  Google Scholar 

  11. M. A. Eryomina and S. F. Lomayeva, “Mechanosynthesis of TiC(NbC) – Cu composites using liquid hydrocarbons,” Mater. Tod. Proc., 12, 151 – 154 (2019); https://doi.org/https://doi.org/10.1016/j.matpr.2019.03.085.

    Article  CAS  Google Scholar 

  12. E. V. Shelekhov and T. A. Sviridova, “Programs for x-ray analysis of polycrystals,” Met. Sci. Heat Treat., 42, 309 – 313 (2000); https://doi.org/https://doi.org/10.1007/BF02471306.

    Article  CAS  Google Scholar 

  13. M. A. Eryomina, S. F. Lomayeva, V. V. Tarasov, et al., “Microstructure characterization and properties of Ti carbohydride/Cu–Ti/GNP nanocomposites prepared by wet ball milling and subsequent magnetic pulsed compaction,” Met. Mater. Int., 27, 1808 – 1818 (2021); https://doi.org/https://doi.org/10.1007/s12540-019-00531-9.

    Article  CAS  Google Scholar 

  14. I. B. Timokhina, M. Enomoto, M. K. Miller, and E. V. Pereloma, “Microstructure-property relationship in the thermomechanically processed C – Mn – Si – Nb – Al – (Mo) transformation-induced plasticity steels before and after prestraining and bake hardening treatment,” Met. Mater. Trans. A, 43, 2473 – 2483 (2012); https://doi.org/https://doi.org/10.1007/s11661-012-1106-8.

    Article  CAS  Google Scholar 

  15. https://jmicrovision.github.io/v127/install127.htm.

  16. J. Gong, J. Wu, and Z. Guan, “Examination of the indentation size effect in low-load Vickers hardness testing of ceramics,” J. Europ. Ceram. Soc., 19, 2625 – 2631 (1999); https://doi.org/https://doi.org/10.1016/S0955-2219(99)00043-6.

    Article  CAS  Google Scholar 

Download references

The work has been performed within State Assignment No. BB 2021 121030100003-7 of the Ministry of Education and Science of the Russian Federation with the use of the equipment of the TSKP “Center for Physical and Physicochemical Methods of Analysis, Study of Properties and Surface Characteristics, Nanostructures, Materials and Articles” of the UDMFITS UrO RAN and of the TsKP the UrFU).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Eremina.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 1, pp. 48 – 54, January, 2023

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eremina, M.A., Lomaeva, S.F., Demakov, S.L. et al. A Composite Based on Niobium η-Carbide: Synthesis, Phase Composition and Properties. Met Sci Heat Treat 65, 47–53 (2023). https://doi.org/10.1007/s11041-023-00890-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-023-00890-6

Keywords

Navigation