Skip to main content

Advertisement

Log in

Effect of Q&P and Q&T Treatments on the Stability of Austenite and Mechanical Properties of Steel 0.2% C – 8.5% Mn – 3.0% Al

  • THERMAL AND THERMOMECHANICAL TREATMENT
  • Published:
Metal Science and Heat Treatment Aims and scope

The effect of quenching-partitioning (Q&P) and quenching-tempering (Q&T) treatments on the stability of austenite and mechanical properties of cold-rolled medium-manganese TRIP steel (0.2% C – 8.5% Mn – 3.0% Al – Fe) is studied. It is shown that the Q&T treatment provides an ultimate tensile strength σr = 1160 MPa and an elongation δ = 53%; the value of σr × δ = 61 GPa · %, which is lower than after the Q&P treatment (σr = 910 MPa, δ = 47% and σr × δ = 43 GPa · %). The elevated mechanical properties of the steel after the Q&T treatment are explained by the higher content of austenite in the structure and the more manifested TRIP effect during the deformation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

Notes

  1. Here and below in the article the content of elements is given in weight percent if not mentioned specially.

References

  1. S. Lee, A. J. Lee, and B. C. De Cooman, “Austenite stability of ultrafine-grained transformation-induced plasticity steel with Mn partitioning,” Scr. Mater., 65(3), 225 – 228 (2011).

    Article  CAS  Google Scholar 

  2. S. W. Suh and S. J. Kim, “Medium Mn transformation-induced plasticity steels: Recent progress and challenges,” Scr. Mater., 126, 63 – 67 (2017).

    Article  CAS  Google Scholar 

  3. G. P. Anastasiadi, S. Yu. Kondrat’ev, V. A. Malyshevskii, and M. V. Sil’nikov, “Importance of thermokinetic diagrams of transformation of supercooled austenite for development of heat treatment modes for critical steel parts,” Met. Sci. Heat Treat., 58(11), 656 – 661 (2017).

  4. Z. C. Li, H. Ding, R. D. K. Misra, and Z. H. Cai, “Deformation behavior in cold-rolled medium-manganese TRIP steel and effect of pre-strain on the Luders bands,” Mater. Sci. Eng. A, 679, 230 – 239 (2017).

    Article  CAS  Google Scholar 

  5. Z. H. Cai, H. Ding, R. D. K. Misra, and Z. Y. Ying, “Austenite stability and deformation behavior in a cold-rolled transformation-induced plasticity steel with medium manganese content,” Acta Mater., 84, 229 – 236 (2015).

    Article  CAS  Google Scholar 

  6. K. Zhang, M. H. Zhang, Z. H. Guo, et al., “A new effect of retained austenite on ductility enhancement in high-strength quenching–partitioning–tempering martensitic steel,” Mater. Sci. Eng. A, 528(29 – 30), 8486 – 8491 (2011).

    Article  CAS  Google Scholar 

  7. J. Speer, D. K. Matlock, B. C. De Cooman, and J. G. Schroth, “Carbon partitioning into austenite after martensite transformation,” Acta Mater., 51(9), 2611 – 2622 (2003).

    Article  CAS  Google Scholar 

  8. S. J. Kim, C. G. Lee, T. H. Lee, and C. S. Oh, “Effect of Cu, Cr and Ni on mechanical properties of 0.15 wt% C TRIP-aided cold rolled steels,” Scr. Mater., 48(5), 539 – 544 (2003).

    Article  CAS  Google Scholar 

  9. A. K. Srivastava, D. Bhattacharjee, G. Jha, et al., “Microstructural and mechanical characterization of C – Mn – Al – Si cold-rolled TRIP-aided steel,” Mater. Sci. Eng. A, 445 – 446, 549 – 557 (2007).

    Article  Google Scholar 

  10. N. Vandijk, A. Butt, L. Zhao at al., “Thermal stability of retained austenite in TRIP steels studied by synchrotron x-ray diffraction during cooling,” Acta Mater., 53(20), 5439 – 5447 (2005).

  11. H. L. Pan, M. H. Cai, H. Ding, “Microstructure evolution and enhanced performance of a novel Nb – Mo microalloyed medium Mn alloy fabricated by low-temperature rolling and warm stamping,” Mater. Des., 134, 352 – 360 (2017).

    Article  CAS  Google Scholar 

  12. H. J. Pan, H. Ding, and M. H. Cai, “Microstructural evolution and precipitation behavior of the warm-rolled medium Mn steels containing Nb or Nb – Mo during intercritical annealing,” Mater. Sci. Eng. A, 736, 375 – 382 (2018).

    Article  CAS  Google Scholar 

  13. H. Pan, M. H. Cai, H. Ding, et al., “Ultrahigh strength-ductile medium-Mn steel auto-parts combining warm stamping and quenching & partitioning,” Mater. Sci. Technol., 35(7), 807 – 814 (2019).

    Article  CAS  Google Scholar 

  14. L. Liu, Q. Yu Q, Z. Wang, et al., “Making ultrastrong steel tough by grain-boundary delamination,” Science, 368(6497), 1347 – 1352 (2020).

  15. Z. C. Li, X. T. Zhang, Y. J. Mou, et al., “Design of an effective heat treatment involving intercritical hardening for high-strength–high elongation of 0.2C – 1.5Al – (6 – 8.5)Mn – Fe TRIP steels: microstructural evolution and deformation behaviour,” Mater. Sci. Technol., 36(4), 500 – 510 (2020).

    Article  CAS  Google Scholar 

  16. Z. C. Li, R. D. K. Misra, Z. H. Cai, et al., “Mechanical properties and deformation behavior in hot-rolled 0.2C – 1.5/3Al – 8.5Mn – Fe TRIP steel: The discontinuous TRIP effect,” Mater. Sci. Eng. A, 673, 63 – 72 (2016).

    Article  CAS  Google Scholar 

  17. Z. C. Li, H. Ding, R. D. K. Misra, and Z. H. Cai, “Microstructure-mechanical property relationship and austenite stability in medium-Mn TRIP steels: The effect of austenite-reverted transformation and quenching-tempering treatments,” Mater. Sci. Eng. A, 682, 211 – 219 (2017).

    Article  CAS  Google Scholar 

  18. Y. Li, W. Li, N. Min, et al., “Effects of hot/cold deformation on the microstructures and mechanical properties of ultra-low carbon medium manganese quenching-partitioning-tempering steels,” Acta Mater., 139, 96 – 108 (2017).

    Article  CAS  Google Scholar 

  19. M. C. Jo, J. Park J, S. S. Sohnet al., “Effects of untransformed ferrite on Charpy impact toughness in 1.8-GPa-grade hot-pressforming steel sheets,” Mater. Sci. Eng. A, 707, 65 – 72 (2017).

  20. Z. H. Cai, D. L. Zhang, L. F. Ma, et al., “Competing deformation mechanisms in an austenite-ferrite medium-Mn steel at different strain rates,” Mater. Sci. Eng. A, 818, 141357 (2021).

    Article  CAS  Google Scholar 

  21. B. Hu and H. W. Luo, “A novel two-step intercritical annealing process to improve mechanical properties of medium Mn steel,” Acta Mater., 176, 250 – 263 (2019).

    Article  CAS  Google Scholar 

  22. P. J. Gibbs, E. De Moor, M. J. Merwin, et al., “Austenite stability effects on tensile behavior of manganese-enriched-austenite transformation-induced plasticity steel,” Metall. Mater. Trans. A, 42a(12), 3691 – 3702 (2011).

  23. V. I. Gorynin, S. Yu. Kondrat’ev, and M. I. Olenin, “Raising the resistance of pearlitic and martensitic steels to brittle fracture under thermal action on the morphology of the carbide phase,” Met. Sci. Heat Treat., 55(9 – 10), 533 – 539 (2014).

  24. V. I. Gorynin, S. Yu. Kondrat’ev, M. I. Olenin, and V. V. Rogozhkin, “A Concept of carbide design of steels with improved cold resistance,” Met. Sci. Heat Treat., 56(9 – 10), 548 – 554 (2015).

  25. E. De Moor, D. K. Matlock, J. G. Speer, and M. J. Merwin, “Austenite stabilization through manganese enrichment,” Scr. Mater., 64(2), 185 – 188 (2011).

    Article  Google Scholar 

  26. G. J. Cheng, B. Gault, C. Y. Huang, and H.W. Yen, “Warm ductility enhanced by austenite reversion in ultrafine-grained duplex steel,” Acta Mater., 148, 344 – 354 (2018).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhichao Li.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 10, pp. 3 – 11, October, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Li, X., Mou, Y. et al. Effect of Q&P and Q&T Treatments on the Stability of Austenite and Mechanical Properties of Steel 0.2% C – 8.5% Mn – 3.0% Al. Met Sci Heat Treat 64, 539–546 (2023). https://doi.org/10.1007/s11041-023-00848-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-023-00848-8

Keywords

Navigation