Skip to main content

Effect Cooling Conditions on the Structure and Properties of Alloy VTI-4

The effect of continuous cooling at a rate of 1.1 K/min and combined cooling with an isothermal hold at 860 – 940°C on the structure, phase composition and properties of titanium alloy VTI-4 is studied. It is shown that introduction of an isothermal hold into the cooling mode lowers the hardness and elevates the content of untransformed β-phase in the structure of the alloy. The structure of the alloy is shown to be the most homogeneous without a feature of secondary decomposition yielding fine precipitates and with a maximum content of β-phase after an isothermal hold at 800°C for 1 h.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.


  1. K. Goyal and N. Sardana, “Mechanical properties of the Ti2AlNb intermetallic: A review,” Trans. Indian Inst. Met., 74, 1839 – 1853 (2021);

    Article  Google Scholar 

  2. G. Wang, X. Sui, Q. Liu, and Y. Liu, “Fabricating Ti2AlNb sheet with high tensile strength and good ductility by hot packed rolling the spark plasma sintered pre-alloyed powder,” Mater. Sci. Eng. A, 801, 140392 (2021);

    Article  CAS  Google Scholar 

  3. Y. Z. Zhang, Y. T. Liu, X. H. Zhao, and Y. J. Tang, “The interface microstructure and tensile properties of direct energy deposited TC11/Ti2AlNb dual alloy,” Mater. Des., 110, 571 – 580 (2016);

    Article  CAS  Google Scholar 

  4. D. Panov, S. Naumov, N. Stepanov, et al., “Effect of pre-heating and post-weld heat treatment on structure and mechanical properties of laser beam-welded Ti2AlNb-based joints,” Intermetallics, 143, 107466 (2022);

    Article  CAS  Google Scholar 

  5. I. Polozov, V. Sufiiarov, A. Kantyukov, et al., “Microstructure, densification, and mechanical properties of titanium intermetallic alloy manufactured by laser powder bed fusion additive manufacturing with high-temperature preheating using gas atomized and mechanically alloyed plasma spheroidized powders,” Add. Manuf., 34, 101374 (2020);

    Article  CAS  Google Scholar 

  6. H. Zhang, N. Yan, H. Liang, and Y. Liu, “Phase transformation and microstructure control of Ti2AlNb-based alloys: Areview,” J. Mater. Sci. Technol., 80, 203 – 216 (2021);

    Article  CAS  Google Scholar 

  7. S. L. Demakov, E. M. Komolikova, A. A. Popov, and F. V. Vodolazskiy, “A diagram of isothermal decomposition of the β-phase in Ti – 22Al – 26 Nb – 0.5Zr – 0.4Mo alloy,” Mater. Sci., 44(3), 374 – 379 (2008);

    Article  CAS  Google Scholar 

  8. S. L. Demakov, M. S. Karabanalov, and O. A. Oleneva, “Transformation of metastable β-solid solution in titanium alloy BTI-4,” Metalloved. Term. Obrab. Met., No. 9, 34 – 39 (2015);

  9. S. L. Demakov, F. V. Vodolazskii, and M. S. Kalienko, “Variation of the structure of intermetallic alloy Ti – 2Al – 23Nb – 0.7Zr – 1.4V – 0.4Mo – 0.3Si during quenching in a gas environment,” Fiz. Met. Metalloved., 119(12), 1304 – 1308 (2018);

    Article  Google Scholar 

  10. A. G. Illarionov, S. V. Grib, A. A. Popov, et al., “Effect of hydrogen on formation of structure and phase composition in an alloy based on Ti2AlNb,” Fiz. Met. Metalloved., 109(2), 142 – 152 (2010);

    Article  Google Scholar 

  11. H. M. Rietveld, “A profile refinement method for nuclear and magnetic structures,” J. Appl. Crystallogr., No. 2, 65 – 71 (1969).

  12. W. C. Oliver and G. M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing identification experiments,” J. Mater. Res., 7(6), 1564 – 1583 (1992).

    Article  CAS  Google Scholar 

  13. A. A. Popov, A. G. Illarionov, S. V. Grib, et al., “Phase and structural transformations in an alloy based on orthorhombic titanium aluminide,” Fiz. Met. Metalloved., 106(4), 399 – 410;

  14. D. B. Miracle and O. N. Senkov, “A critical review of high entropy alloys and related concepts,” Acta Mater., 122, 448 – 511 (2017);

    Article  CAS  Google Scholar 

  15. A. A. Il’in, B. A. Kolachev, and I. S. Pol’kin, Titanium Alloys. Composition, Structure, Properties [in Russian], VILS–MATI, Moscow (2009), 520 p.

  16. A. G. Illarionov, O. G. Khadzhieva, and O. A. Elkina, “Formation of structure and properties in aging of quenched alloy based on orthorhombic hydrogen-alloyed Ti2AlNb aluminide,” Fiz. Met. Metalloved., 119(8), 844 – 849 (2018);

    Article  Google Scholar 

  17. S. L. Demakov and F. V. Vodolazskii, “A study of the effects of quenching temperature on the structure and properties of alloy Ti – 19.6Al – 12.4Nb – 1.5B – 0.9Zr – 0.6Mo,” Metalloved. Term. Obrab. Met., No. 5, 35 – 41 (2018);

Download references

The study has been performed due to grant No. 22-49-02066 of the Russian Scientific Foundation (

Author information

Authors and Affiliations


Corresponding author

Correspondence to S. L. Demakov.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 8, pp. 33 – 38, August, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Demakov, S.L., Vodolazskii, F.V., Illarionov, A.G. et al. Effect Cooling Conditions on the Structure and Properties of Alloy VTI-4. Met Sci Heat Treat 64, 451–457 (2022).

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI:

Key words

  • VTI-4
  • O-phase
  • structure
  • phase composition
  • hardness
  • modulus of elasticity