Skip to main content

Inheritance of Structure and Texture in Alloy Zr – 2.5% Nb

The structure and texture of alloy Zr – 2.5% Nb in initial condition and after a heat treatment (exposure to 930°C, rapid or slow cooling) are studied by the method of electron backscatter diffraction. The main crystallographic orientations of the α- and β-phases are determined. Existence of a dominant shear component in the β → α transformation in the alloy after different treatments is detected. Structure and texture inheritance is shown to occur in alloy Zr – 2.5% Nb as a result of the α → β → α phase transformations.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.


  1. A. V. Dobromyslov and N. I. Taluts, Structure of Zirconium and its Alloys [in Russian], URO RAN, Ekaterinburg (1997), 230 p.

    Google Scholar 

  2. D. Douglas, The Physical Metallurgy of Zirconium [Russian translation], Atomizdat, Moscow (1975), 250 p.

    Google Scholar 

  3. A. S. Zaimovskii, A. V. Nikulina, and N. G. Reshetnikov, Zirconium Alloys in Nuclear Power Engineering [in Russian], Énergoatomizdat, Moscow (1994), 256 p.

    Google Scholar 

  4. G. Grad, J. J. Pieres, and G. A. Fernandez, “Lattice parameter of the Zr-base bcc phase: neutron scattering study and assessment of experimental data,” Zr. Metallod. A, 140, 72 – 73 (1995).

    Google Scholar 

  5. E. M. Tararaeva, L. S. Murav’eva, and O. S. Invanov, Structure and Properties of Alloys for Nuclear Power Engineering [in Russian], Nauka, Moscow (1973), 138 p.

  6. P. V. Shebaldov, A. V. Nikulina, P. E. Ageenkova, and N. V. Kozhevnikova, Structure and Properties of Zirconium Alloys with Niobium [in Russian], Energoatomizdat, Moscow (1977), 170 p.

    Google Scholar 

  7. R. S. Ambartsumyan and A. A. Kiselev, Mechanical Properties and Corrosion of Zirconium and its Alloys in Water, Steam and Gases at Elevated Temperatures [in Russian], Atomizdat, Moscow (1959), 486 p.

    Google Scholar 

  8. O. S. Ivanov, A. S. Abramova, E. M. Tararaeva, and I. A. Tregubov, Structure of Zirconium Alloys [in Russian], Nauka, Moscow (1973), 198 p.

    Google Scholar 

  9. D. Cheadle, C. Ells, andW. Evans, “The development of texture in zirconium alloy tubes,” Nucl. Mater. A, 16, 199 (1967).

  10. K. Steward, and B. Cheadle, “The effect of preferred orientation on mechanical properties and deformation behavior of zircaloy-2 fuel sheathing,” AECL-2627 (1966).

  11. B. A. Cheadle and S. A. Aldrige, “Rils development of texture α-structure in Zr – 2.5% Nb extruded tubes,” Canad. Metallurg. Quart. A, 11, 121 – 126 (1972).

    Article  CAS  Google Scholar 

  12. G. Tyzack and P. Hurst. “SCANUK: a collaborative program to develop new zirconium cladding alloys,” Nucl. Mater., 66, 163 – 186 (1977).

    Article  CAS  Google Scholar 

  13. R. A. Murgatroyd and J.Winton, “The strength of Zr + 2.5% Nb alloy in the annealed and cold worked condition,” in: TRG Rept. 1786, Risley, Warrington (1969).

  14. A. B. Johnson, J. E. Lesurf, and R. S. Proebstle, “Study of zirconium alloy corrosion parameters in the advanced test reactor,” in: Zirconium in Nuclear Applications, ASTM STP 551, Philadelphia (1974), pp. 495 – 513.

  15. E. Yu. Ryvkin, B. E. Rodchenkov, and V. M. Filatov, Strength of Zirconium Alloys [in Russian], Atomizdat, Moscow (1974), 170 p.

    Google Scholar 

  16. G. A. Nekrasova, B. G. Parfenov, and A. S. Pilyaev, Production of Zirconium Tubes for Fuel Element Cladding in Foreign Countries [in Russian], TsNIIatominform, Moscow (1976), 102 p.

    Google Scholar 

  17. A. V. Nikulina, N. G. Reshetnikova, P. V. Shebaldov, et al., “Process of production of channel tubes from alloy Zr – 2.5% Nb mounted in RBMK reactors,” Vopr. Atom. Nauki, Ser. Materialoved., Nov. Mater., Is. 2(36), 46 – 53 (1990).

    Google Scholar 

  18. A. S. Pilyaev, G. N. Klypina, and L. V. Semenova, Zirconium in Nuclear Industry, Issue 3 [in Russian], TsNIIatominform, Moscow (1981), p. 64.

    Google Scholar 

  19. N. A. Dollezhal and I. Ya. Emel’yanova, Channel-Type Nuclear Reactor [in Russian], Atomizdat, Moscow (1980), 230 p.

    Google Scholar 

  20. M. A. Abramov, V. I. Avdeev, and E. O. Adamov, RMBK Channel-Type Nuclear Reactor [in Russian], GUP NIKIET, Moscow (2006), 632 p.

    Google Scholar 

  21. R. Holzer and W. Kaden, “Development and present status of zircaloy cladding technology for pressurized water reactors in the Federal Republic of Germany,” in: Physical Metallurgy of Reactor Fuel Elements A, London (1975), p. 180.

  22. G. Tyzack and P. Hurst, “SCANUK: a collaborative programme to develop new zirconium cladding alloys,” J. Nucl. Mater. A, 66, 163 – 18 (1977).

    Article  CAS  Google Scholar 

  23. F. Christien and A. Barbu, “Cluster dynamics modelling of irradiation growth of zirconium single,” J. Nucl. Mater. A, 393, 153 – 161 (2009).

    Article  CAS  Google Scholar 

  24. C. Yan and X. Wang, “Effects of ion irradiation on microstructure and properties of zirconium alloys,” Nucl. Eng. Technol. A, 47, 323 – 331 (2015).

    Article  Google Scholar 

  25. G. S. Was, “Materials degradation in fusion reactors: Lessons earned of relevance to fusion reactor systems,” J. Nucl. Mater. A, 367, 11 – 20 (2007).

    Article  Google Scholar 

  26. Y. Idress, Z. Yao, M. A. Kirk, and M. R. Daymond, “In situ study of defect accumulation in zirconium under heavy ion irradiation,” J. Nucl. Mater. A, 433, 95 – 107 (2013).

    Article  Google Scholar 

  27. Ronald B. Adamson, Irradiation Creep and Growth of Zirconium Alloys: A Critical Review (2019).

  28. G. A. Bickel, M. Griffiths, A. Douchant, et al., “Improved Zr – 2.5 Nb pressure tubes for reduced diametral strain in advanced CANDU reactors,” Am. Soc. Test. Mater., Zirconium in the Nuclear Industry A, 1529, 327 – 348 (2010).

  29. S. T. Mahmood, M. Griffiths, R. B. Adamson, and C. Lemaignan, “Material test reactors and other irradiation facilities,” ZIRAT 23 Special Topic Rept., Vol. 187A, ANT Int. (2019).

  30. V. L. Panchenko and S. A. Averin, “Variation of the microstructure and composition of second phases of zirconium alloys under durable irradiation,” Vopr. Atom. Nauki Tekh., 307 – 321 (2007).

  31. M. G. Isaenkova Y. Perlovich, “Regularities of recrystallization of roller single crystals and polycrystals of zirconium and alloy Zr – 1% Nb,” Phys. Met. Metallogr. A, 115, 756 – 764 (2014).

  32. S. Yagnik and A. Garde, “Zirconium alloys for LWR fuel cladding and core internals,” Struct. Alloys Nucl. Energy Appl. A, 247 – 291 (2019).

  33. V. D. Sadovskii, Structural Inheritance in Steel [in Russian], Metallurgiya, Moscow (1973), 208 p.

    Google Scholar 

  34. M. L. Lobanov, S. V. Danilov, and V. N. Urtsev, “Structural and textural inheritance in γ ↔ α transformations in low-carbon low-alloy tube steel,” Fiz. Met. Metalloved., 16(2), 46 – 53 (2019).

    Google Scholar 

  35. M. L. Lobanov, I. Yu. Pyshmintsev, V. N. Urtsev, et al., “Texture inheritance in ferrite-martensite structure of low-alloy steel after controlled thermomechanical treatment,” Fiz. Met. Metalloved., 120(12), 1279 – 1285 (2019).

    Google Scholar 

  36. A. Kamp, R. H. Petrov, and S. M. C. Bohemen, “Nucleation and variant selection of secondary α plates in a β Ti alloy,” Acta Mater. A, 58 (2008).

  37. A. A. Redikultsev, S. I. Stepanov, and M. L. Lobanov, “The spectrum of crystallographic misorientations of intercrystalline boundaries for BCC-HCP phase transformation in additively manufactured Ti – 6Al – 4V,” Defect Diffus. Forum, Trans. Tech. Publ., 410, 867 – 871 (2021).

    Article  Google Scholar 

  38. G. M. Rusakov, M. L. Lobanov, A. A. Redikul’tsev, and I. V. Kagan, “Reorientation of body-centered cubic single crystals in cold rolling,” Steel Transl., 40(3), 219 – 224 (2010).

  39. M. L. Lobanov, V. I. Pastukhov, and A. A. Redikultsev, “Crystallographic features of decomposition of γ-phase in austenitic corrosion-resistant steel,” Metal Sci. Heat Treat., 62(7 – 8), 423 – 429 (2020).

  40. M. L. Lobanov, A. A. Redikul’tsev, and V. I. Pastukhov, “Effect of special boundaries on γ → α transformation in austenitic stainless steel,” Phys. Met. Metallogr., 122(4), 396 – 402 (2021).

  41. M. L. Lobanov, M. A. Zorina, P. L. Reznik, et al., “Specific features of crystallographic texture formation in bcc-fcc transformation in extruded brass,” J. Alloys Compd., 882, 160 – 231 (2021).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to V. I. Pastukhov.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 7, pp. 46 – 51, July, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yarkov, V.Y., Pastukhov, V.I., Averin, S.A. et al. Inheritance of Structure and Texture in Alloy Zr – 2.5% Nb. Met Sci Heat Treat 64, 397–402 (2022).

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI:

Key words

  • alloy Zr – 2.5% Nb
  • phase transformations
  • intercrystalline boundaries
  • Burgers orientation relationships
  • inheritance of structure and texture