Skip to main content

Crystallographic Features of Phase Transformations in Steel 100KhN3A

The structure of the surface layer of steel 12KhN3A after carburizing is studied. The content of carbon in the surface layer is shown to correspond to steel 100KhN3A. The crystallographic features of decomposition of supercooled austenite in the layer are investigated. Orientation microscopy is performed with the use of a scanning electron microscope. The orientation relations arising in the martensitic and pearlitic transformations are considered. It is shown that the orientation relations in the γ → α′ transformation are intermediate between the orientation relations of Kurdyumov–Sachs, Nishiyama–Wasserman and {113}γ ∥ {112}α, ⟨110⟩γ ∥ ⟨111⟩α.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.


  1. Ya. D. Vishnyakov, A. A. Babareko, S. A. Vladimirov, and I. V. Égiz, The Theory of Formation of Textures in Metals and Alloys [in Russian], Nauka, Moscow (1979), 323 p.

  2. G. Kurdjumov and G. Sachs, Zeitschrift für Phys., 64, 325 – 343 (1930).

    Article  Google Scholar 

  3. Z. Nishiyama, Sci. Rep. Tohoku Univ., 23, 637 – 664 (1934).

    CAS  Google Scholar 

  4. G. Wassermann, Über den Mechanismus der α – γ-Umwandlung des Eisens, Verlag Stahleisen, Dusseldorf (1935).

  5. A. B. Greninger and A. R. Troiano, Metall. Trans., 185, 590 – 598 (1949).

    Google Scholar 

  6. W. Pitsch, Arch. Für das Eisenhüttenwes, 38, 853 – 864 (1967).

    Article  CAS  Google Scholar 

  7. V. M. Gundyrev, V. I. Zel’dovich, and V. M. Schastlivtsev, “Crystallographic analysis of the martensitic transformation in medium-carbon steel with packet martensite,” Phys. Met. Metallogr., 117, 1017 – 1027 (2016).

    Article  CAS  Google Scholar 

  8. V. Kraposhin, I. Jakovleva, L. Karkina, et al., “Microtwinning as a common mechanism for the martensitic and pearlitic transformations,” J. Alloys Compd., 577S, 30 – 36 (2013).

    Article  Google Scholar 

  9. C. Mapelli and R. Venturini, “Dependence of the mechanical properties of an a/b brass on the microstructural features induced by hot extrusion,” Scr. Mater., 54, 1169 – 1173 (2006).

    Article  CAS  Google Scholar 

  10. M. Li, Yu. Zhang, X.Wang, et al., “Crystal defect associated selection of phase transformation orientation relationships (Ors),” Acta Mater., 152, 315 – 326 (2018).

    Article  Google Scholar 

  11. M. L. Lobanov, M. A. Zorina, P. L. Reznik, et al., “Specific features of crystallographic texture formation in bcc-fcc transformation in extruded brass,” J. Alloys Compd., 882, 160231 (2021).

    Article  CAS  Google Scholar 

  12. S. Morito, H. Tanaka, R. Konishi, et al., “The morphology and crystallography of lath martensite in Fe – C alloys,” Acta Mater., 51, 1789 – 1799 (2003).

    Article  CAS  Google Scholar 

  13. R. Decocker, R. Petrov, P. Gobernado, and L. Kestens, “Quantitative evaluation of the crystallographic relation in a martensitic transformation in an Fe – 28% Ni alloy,” in: Evolution of Deformation Microstructures in 3D, Proc. 25th Risø Int. Symp. on Mater. Sci. (2004), pp. 275 – 281.

  14. H. Kitahara, R. Ueji, M. Ueda, et al., “Crystallographic analysis of plate martensite in Fe – 28.5 at.% Ni by Fe-SEM/EBSD,” Mater. Charact., 54, 378 – 386 (2005).

    Article  CAS  Google Scholar 

  15. H. Kitahara, R. Ueji, N. Tsuji, and Y. Minamino, “Crystallographic features of lath martensite in low-carbon steel,” Acta Mater., 54, 1279 – 1288 (2006).

    Article  CAS  Google Scholar 

  16. A. Shibata, H. Jafarian, and N. Tsuji, “Microstructure and crystallographic features of martensite transformed from ultrafine-grained austenite in Fe24Ni0.3C alloy,” Mater. Trans., 53(1), 81 – 86 (2012).

    Article  CAS  Google Scholar 

  17. T. Tomida and M.Wakita, “Transformation texture in hot-rolled steel sheets and its quantitative prediction,” ISIJ Int., 52(4), 601 – 609 (2012).

    Article  CAS  Google Scholar 

  18. V. A. Yardley and E. I. Payton, “Austenite-martensite/bainite orientation relationship: characterization parameters and their application,” Mater. Sci. Technol., 30(9), 1125 – 1130 (2014).

    Article  CAS  Google Scholar 

  19. V. M. Gundyrev, V. I. Zel’dovich, and V. I. Schastlivtsev, “Orientation relationships and mechanism of martensitic transformation in medium-carbon steel with lath martensite,” Izv. Ross. Akad. Nauk, Ser. Fiz., 81(11), 1435 – 1441 (2017).

    Google Scholar 

  20. GOST 4543–2016. Metal Products from Structural Alloy Steel. Performance Specification, Inst. 2017-10-01 [in Russian], Gosstandart Rossii, FGUP “STANDARTINFORM,” Moscow (2017).

  21. M. L. Lobanov, G. M. Rusakov, A. A. Redikul’tsev, et al., “Investigation of special misorientations in lath martensite of low carbon steel using the method of orientation microscopy,” Phys. Met. Metallogr., 117(3), 254 – 259 (2016).

    Article  CAS  Google Scholar 

  22. V. M. Schastlivtsev, D. P. Rodionov, Yu. V. Khlebnikova, and I. L. Yakovleva, “Special features of the structure and crystallography of lath martensite in structural steels,” Metally, No. 5, 32 – 41 (2001).

  23. M. L. Lobanov, V. I. Pastukhov, and A. A. Redikul’tsev, “Crystallographic features of decomposition of γ-phase in austenitic corrosion-resistant steel,” Metal. Sci. Heat Treat., 62(7–8), 423 – 429 (2020).

    Article  CAS  Google Scholar 

  24. M. L. Lobanov, A. A. Redikul’tsev and V. I. Pastukhov, “Effect of special boundaries on γ → α transformation in austenitic stainless steel,” Phys. Met. Metallogr., 122(4), 396 – 402 (2021).

    Article  CAS  Google Scholar 

  25. V. M. Schastlivtsev, N. I. Medvedeva, V. S. Kraposhin, et al., Cementite in Carbon Steels [in Russian], Ekaterinburg (2017), 380 p.

Download references

The authors acknowledge the aid of program No. 211 of the RF Government No. 02.A03.21.0006 for backing up the leading universities of the RF aimed at raising their competitiveness. The work has been performed with financial support of a grant of the President of the Russian Federation (project MK-5882.2021.4). The studies were conducted using the equipment of the Institute of Nuclear Materials.

Author information

Authors and Affiliations


Corresponding author

Correspondence to M. A. Zorina.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 7, pp. 27 – 32, July, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zorina, M.A., Yarkov, V.Y. & Redikul’tsev, A.A. Crystallographic Features of Phase Transformations in Steel 100KhN3A. Met Sci Heat Treat 64, 379–383 (2022).

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI:

Key words

  • alloyed chromium-nickel carburized steel
  • diffusion phase transformation
  • shear phase transformation
  • austenite
  • pearlite
  • martensite
  • orientation relations