Skip to main content

Crystallographic Features of Phase Transformations in Titanium Alloy VT6

Special feature of formation of local texture of α- and β-phases in polymorphic transformation in titanium alloy VT6 are studied by orientation microscopy (EBSD). The specimens are treated by an isothermal hold in the single-phase β-range at 1065°C and cooled in water, in air, or with the furnace. The crystallographic misorientations of crystallites in the α-phase and between the α- and β-phases are studied. It is shown that a dominant shear component is typical for polymorphic transformations occurring at any cooling rate. A secondary β-phase precipitated during the cooling in the (α + β)-range differs in its orientation from the high-temperature β-phase.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. M. L. Lobanov, G. M. Rusakov, A. A. Redikultsev, et al., “A study of special misorientations in lath martensite of low-carbon steel by the method of orientation microscopy,” Fiz. Met. Metalloved., 117(3), 266 (2016).

    Google Scholar 

  2. M. L. Lobanov, V. I. Pastukhov, and A. A. Redikultsev, “Crystallographic features of decomposition of γ-phase in the austenite of corrosion-resistant steel,” Metalloved. Term. Obrab. Met., No. 7(781), 5 – 11 (2020).

  3. W. G. Burgers, “On the process of transition of the cubic-bodycentered modification into the hexagonal-close-packed modification of zirconium,” Physica, 1, 561 – 586 (1934).

    Article  CAS  Google Scholar 

  4. N. Yu. Zolotarevskii, E. V. Nesterova, A. S. Rubtsov, et al., “Large-angle boundaries arising in phase transformations,” Poverkh. Fiz., Khim., Mekh., No. 5, 30 – 35 (1982).

  5. A. A. Redikultsev, S. I. Stepanov, and M. L. Lobanov, “The spectrum of crystallographic misorientations in intercrystalline boundaries for bcc-hcp phase transformation in additively manufactured Ti – 6Al – 4V,” Defect Diffus. Forum, Trans. Tech. Publ., 410, 867 – 871 (2021).

    Article  Google Scholar 

  6. N. Gey and M. Humbert, “Characterization of the variant selection occurring during the α → β → α phase transformations of a cold rolled titanium steel,” Acta Mater., 50, 277 – 287 (2002).

    Article  CAS  Google Scholar 

  7. D. Qiu, R. Shi, D. Zhang, et al., “Variant selection by dislocations during α precipitation in α/β titanium alloys,” Acta Mater., 88, 218 – 231 (2015).

    Article  CAS  Google Scholar 

  8. S. Wang, M. Aindow, and M. J. Starink, “Effect of self-accommodation on α/α boundary populations in pure titanium,” Acta Mater., 51, 2485 – 2503 (2003).

    Article  CAS  Google Scholar 

  9. E. Farabi, V. Tari, P. D. Hodgson, et al., “On the grain boundary network characteristics in a martensitic Ti – 6Al – 4V alloy,” J. Mater. Sci., 55, 15,299 – 15,321 (2020).

    Article  CAS  Google Scholar 

  10. R. Shi, V. Dixit, G. B. Viswanathan, et al., “Experimental assessment of variant selection rules for grain boundary α in titanium alloys,” Acta Mater., 102, 197 – 211 (2016).

    Article  CAS  Google Scholar 

  11. R. Shi, V. Dixit, H. L. Fraser, et al., “Variant selection of grain boundary α by special prior β grain boundaries in titanium alloys,” Acta Mater., 75, 156 – 166 (2014).

    Article  CAS  Google Scholar 

  12. N. Standford, P. S. Bate, et al., “Crystallographic variant selection in Ti – 6Al – 4V,” Acta Mater., 52, 5215 – 5224 (2004).

    Article  Google Scholar 

  13. Y. Chen, H. Kou, L. Cheng, et al., “Experimental evidence of precipitation of all 12 variants in a single β grain in titanium alloys,” Adv. Mater. Sci. Eng., 2018, 1 – 8 (2018).

    Google Scholar 

  14. J. Wang, L. Liu C. N. Tomé, et al., “Twinning and de-twinning via glide and climb of twinning dislocations along serrated coherent twin boundaries in hexagonal-close-packed metals,” Mater. Res. Lett., 1, 81 – 88 (2013).

    Article  Google Scholar 

  15. H. Ghonem, “Microstructure and fatigue crack growth mechanisms in high temperature titanium alloys,” Int. J. Fatigue, 32, 1448 – 1460 (2010).

    Article  CAS  Google Scholar 

  16. S. Hémery, A. Naït-Ali, M. J. Guéguen, et al., “A 3D analysis of the onset of slip activity in relation to the degree of micro-texture in Ti – 6Al – 4V,” Acta Mater., 181, 36 – 48 (2019).

    Article  Google Scholar 

  17. M. R. Daymond, R. A. Holt, S. Cai, et al., “Texture inheritance and variant selection through an hcp-bcc-hcp phase transformation,” Acta Mater., 58, 4053 – 4066 (2010).

    Article  CAS  Google Scholar 

  18. G. C. Obasi, S. Birosca, J. Quinta Da Fonseca, et al., “Effect of β grain growth on variant selection and texture memory effect during α → β → α phase transformation in Ti – 6Al – 4V,” Acta Mater., 60, 1048 – 1058 (2012).

    Article  CAS  Google Scholar 

  19. N. Gey, M. Humbert, M. J. Philippe, et al., “Modeling the transformation texture of Ti-64 sheets after rolling in the β-field,” Mater. Sci. Eng. A, 230, 68 – 74 (1997).

    Article  Google Scholar 

  20. R. J. Wilson, V. Randle, and W. J. Evans, “The influence of the Burgers relation on crack propagation in a near α-titanium alloy,” Philos. Mag. A, Phys. Condens. Matter, Struct. Defect Mech. Prop., 76, 471 – 480 (1997).

    CAS  Google Scholar 

  21. M. R. Bache, “Processing titanium alloys for optimum fatigue performance,” Int. J. Fatigue, 21, 105 – 111 (1997).

    Article  Google Scholar 

  22. M. Salib, J. Teixeira, L. Germain, et al., “Influence of transformation temperature on mesotexture associated with α precipitation at β grain boundaries in a β metastable titanium alloy,” Acta Mater., 61, 3758 – 3768 (2013).

    Article  CAS  Google Scholar 

  23. M. L. Lobanov, A. S. Yurovskikh, N. I. Kardonina, et al., Methods of Texture Study in Materials [in Russian], Izd. Uralsk. Univers., Ekaterinburg (2014), 115 p.

    Google Scholar 

  24. A. J. Schwartz and W. E. King, “The potential engineering of grain boundaries through thermomechanical processing,” J. Min., Met., Mater. Soc., 50, 50 – 55 (1998).

    Article  CAS  Google Scholar 

  25. G. Palumbo, E. M. Lehockey, and P. Lin, “Application for grain boundary engineered materials,” J. Min., Met., Mater. Soc., 50, 40 – 43 (1998).

    Article  CAS  Google Scholar 

  26. H. Beladi and G. S. Rohrer, “The role of thermomechanical routes on the distribution of grain boundary and interface plane orientations in transformed microstructures,” Metall. Mater. Trans. A, Phys. Metall. Mater. Sci., 48, 2781 – 2790 (2017).

    Article  CAS  Google Scholar 

  27. S. J. Dillon, M. Tang, W. C. Carter, et al., “Complexion: A new concept for kinetic engineering in materials science,” Acta Mater., 55, 6208 – 6218 (2007).

    Article  CAS  Google Scholar 

  28. G. Lütjering, “Influence of processing on microstructure and mechanical properties of (α+β) titanium alloys,” Mater. Sci. Eng. A, 243, 32 – 45 (1998).

    Article  Google Scholar 

  29. A. K. Ackerman, A. J. Knowles, H. M. Gardner, et al., “The kinetics of primary alpha plate growth in titanium alloys,” Metall. Mater. Trans. A, Phys. Metall. Mater. Sci., 51, 131 – 141 (2020).

    Article  CAS  Google Scholar 

  30. T. Karthikeyan, A. Dasgupta, and R. Khatirkar, “Effect of cooling rate on transformation texture and variant selection during β→ α transformation in Ti – 5Ta – 1.8Nb alloy,” Mater. Sci. Eng. A, 528, 549 – 558 (2010).

    Article  Google Scholar 

  31. M. L. Lobanov, M. A. Zorina, P. L. Reznik, et al., “Specific features of crystallographic texture formation in bcc-fcc transformation in textured brass,” J. Alloys Compd., 882, 160231 (2021).

    Article  CAS  Google Scholar 

  32. M. L. Lobanov, V. I. Pastukhov, and A. A. Redikultsev, “Effect of special boundaries on γ → α transformation in austenitic stainless steel,” Fiz. Met. Metalloved., 122(4), 424 – 430 (2021).

    Google Scholar 

  33. P. L. Stephenson, N. Haghdadi, R. DeMott, et al., “Effect of scanning strategy on variant selection in additively manufactured Ti – 6Al – 4V,” Addit. Manuf., 36, 101581 (2020).

    CAS  Google Scholar 

  34. Y. V. Khlebnikova, D. P. Rodionov, L. Y. Egorova, et al., “Crystallographic features of the α-phase structure in hafnium and hafnium-titanium alloys,” Tech. Phys., 63, 1771 – 1783 (2018).

    Article  CAS  Google Scholar 

  35. Yu. P. Nemirovskii and M. P. Nemirovskii, “Matrixes of orientation relationships under phase transformations and twinning,” Zavod. Lab., 41(11), 1347 – 1353 (1975).

    Google Scholar 

Download references

The work has been performed within a state assignment of the Ministry of Science and Higher Education of the Russian Federation (topic No. 0836-2020-0020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Naschetnikova.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 7, pp. 10 – 16, July, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Naschetnikova, I.A., Stepanov, S.I., Karabanalov, M.S. et al. Crystallographic Features of Phase Transformations in Titanium Alloy VT6. Met Sci Heat Treat 64, 363–369 (2022). https://doi.org/10.1007/s11041-022-00816-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-022-00816-8

Key words

  • titanium alloys
  • phase transformations
  • grain boundaries
  • EBSD
  • orientation microscopy