Skip to main content

Advertisement

Log in

Modeling by a Molecular Dynamics Method of Structural Changes of a BCC Metal Surface Layer with Short-Term High-Energy External Action

  • CHEMICAL HEAT TREATMENT AND COATINGS
  • Published:
Metal Science and Heat Treatment Aims and scope

Results of molecular-dynamic simulation of structural changes in the surface layer of a design cell of a BCC-crystal under short-term high-energy action are presented. A spatial model where the temperature of the design cell is distributed in accordance with the solution of a linear problem of heat conduction makes it possible to detect disruption of surface layer continuity, including localization of excess free volumes in the form of spherical pores. Dimensions of these imperfections and the time of their existence differ during modeling of laser radiation with different energy density. Conditions are revealed for pore stability during the whole simulation period and a relationship between crystallographic orientation of the “solid – liquid” interphase boundary and sizes of pores formed is determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. M. A. Zav’yalova, “Surface modification of quartz glass by a pulsed picosecond laser,” Komp. Optika, 40(6), 863 – 870 (2016).

  2. V. I. Mazhukin, M. NM. Demin, and A. V. Shapranov, “Effects of non-equilibrium with action of pulsed laser radiation on metal,” Opt. Zh., 78(8), 29 – 37 (2011).

    Google Scholar 

  3. T. O. Yavtushenko, A. S. Kadochnikov, S. G. Novikov, et al., “Experimental study of structuring of a metal surface by high power femtosecond laser pulses,” Izvest. Samar. Nauch. Tsentra Ross. Akad. Nauk, 15[4(5)], 1033 – 1037 (2013).

  4. J.-K. Kuo, P.-H. Huang, S.-K. Chien, et al., “Molecular dynamics simulations of crater formation induced by laser ablation on the surface of α-Fe substrate” MATEC Web of Conferences, 167, No. 03011 (2018).

  5. X.-F. Gong, G.-X. Yang, P. Li, et al., “Molecular dynamics simulation of pulsed laser ablation,” Int. J. Modern Phys. B, 25(4), 543 – 550 (2011).

    Article  CAS  Google Scholar 

  6. C. Cheng, A. Q. Wu, and X. Xu, “Molecular dynamics simulation of ultrafast laser ablation of fused silica,” J. Phys.: Conf. Ser., 59, 100 – 104 (2007).

    CAS  Google Scholar 

  7. M. I. Mendelev, S. Han, D. J. Srolovitz, et al., “Development of new interatomic potentials appropriate for crystalline and liquid iron,” Philos. Mag., 83(35), 3977 – 3994 (2003).

    Article  CAS  Google Scholar 

  8. A. Stukowski, “Visualization and analysis of atomistic simulation data with OVITO — the Open Visualization Tool,” Model. Simul. Mater. Sci. Eng., 18, 015012 (2010).

  9. N. N. Rykalkin, A. A. Uzlov, I. V. Zuev, and A. N. Kokora, Laser and Electron Beam Treatment of Materials: Handbook [in Russian], Mashinostroenie, Moscow (1985).

  10. A. Stukowski, “Computational analysis methods in atomistic modeling of crystals,” J. Minerals, Met. & Mater. Soc., 66(3), 399 – 407 (2014).

    Article  CAS  Google Scholar 

  11. V. L. Orlov and A. G. Malyshkina, “Formation of nanometric ordered structures of radiation pores,” Izv. Vysh. Uchebn. Zaved., Fizika, 46(2), 31 – 35 (2003).

    Google Scholar 

  12. A. V. Markidonov and M. D. Starostenkov, “Possibility of homogeneous pore generation in grain boundary region under action impact post-cascade waves,” Vopr. Atom. Nauki Tekh., Ser. Matemat. Model. Fiz. Protsessov, No. 3, 37 – 46 (2016).

  13. A. V. Markidonov, M. D. Starostenkov, and E. P. Pavlovskaya, “Effect of post-cascade impact waves on vacancy pore coarsening,” Fund. Probl. Sovr. Mater., 9(4-2), 694 – 701 (2012).

    Google Scholar 

  14. A. V. Markidonov, M. D. Starostenkov, and P. V. Zakharov, “Growth of small vacancy accumulations initiated by sliding post-cascade impact waves,” Pis’ma Mater., 2(2), 111 – 114 (2012).

    Google Scholar 

  15. J. R. Morris and X. Song, “The anisotropic free energy of the Lennard-Jones crystal-melt interface,” J. Chem. Phys., 119(7), 3920 – 3925 (2003).

    Article  CAS  Google Scholar 

  16. D. Y. Sun, M. Asta, J. J. Hoyt, et al., “Crystal-melt interfacial free energies in metals: fcc versus bcc,” Phys. Rev. B, 69(2), 020102 (2004).

  17. J. Liu, R. L. Davidchack, and H. B. Dong, “Molecular dynamics calculation of solid-liquid interfacial free energy and its anisotropy during iron solidification,” Comput. Mater. Sci., 74, 92 – 100 (2013).

    Article  CAS  Google Scholar 

  18. G. J. Ackland and A. P. Jones, “Applications of local crystal structure measures in experiment and simulation,” Phys. Rev. B, 73(5), 054104 (2006).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Gostevskaya.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 5, pp. 16 – 21, May, 2022.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Markidonov, A.V., Starostenkov, M.D., Gostevskaya, A.N. et al. Modeling by a Molecular Dynamics Method of Structural Changes of a BCC Metal Surface Layer with Short-Term High-Energy External Action. Met Sci Heat Treat 64, 258–263 (2022). https://doi.org/10.1007/s11041-022-00796-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-022-00796-9

Keywords

Navigation