Skip to main content
Log in

Structure and Properties of Al – Li Alloy after Different Artificial Ageing Regimes and Preliminary Tensile Deformation

  • ALUMINUM AND ITS ALLOYS
  • Published:
Metal Science and Heat Treatment Aims and scope

The effect of preliminary 3% tension and artificial ageing regimes on the structure and properties of Al – Li alloy 2A93-T3 sheet is studied. Tensile tests and EBSD analysis of the alloy are conducted. Fracture surfaces are analyzed, and chemical element distribution within the structure is determined. It is established that preliminary tension facilitates failure of coarse T2 and R phases within the structure and formation of fine hardening δ'-phase, a large number of low-angle boundaries and a new S-texture, which increase alloy strength after ageing. A more effective two-stage artificial ageing regime is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  1. J. R. J. X. Raj and B. P. Shanmugavel, “Thermal stability of ultrafine grained AA8090 Al – Li alloy processed by repetitive corrugation and straightening,” J. Mater. Res. Technol., 8, No. 3, 3251 – 3260 (2019).

    Article  Google Scholar 

  2. F. Liu, Z. Liu, M. Liu, et al., “Analysis of empirical relation between microstructure, texture evolution and fatigue properties of an Al – Cu – Li alloy during different pre-deformation processes,” Mater. Sci. Eng. A, 726, 309 – 319 (2018).

    Article  CAS  Google Scholar 

  3. Z. Jin, L. Zhide, X. Fushun, et al., “Regulating effect of pre-stretching degree on the creep aging process of Al – Cu – Li alloy,” Mater. Sci. Eng. A, 763, 138157 (2019).

    Article  Google Scholar 

  4. L. Hu, L. Zhan, Z. Liu, et al., “The effects of pre-deformation on the creep aging behavior and mechanical properties of Al – Li – S4 alloys,” Mater. Sci. Eng. A, 703, 496 – 502 (2017).

    Article  CAS  Google Scholar 

  5. Y. Lin, C. Lu, C. Wei, et al., “Effect of aging treatment on microstructures, tensile properties and intergranular corrosion behavior of Al – Cu – Li alloy,” Mater. Charact., 141, 163 – 168 (2018).

    Article  CAS  Google Scholar 

  6. L. Jia, R. Xueping, H. Hongliang, and Z. Yanling, “Microstructural evolution and superplastic deformation mechanisms of as-rolled 2A97 alloy at low-temperature,” Mater. Sci. Eng. A, 759, 19 – 29 (2019).

    Article  CAS  Google Scholar 

  7. Z. Liwei, G.Wenli, G. Zhaohui, et al., “Hot deformation characterization of as-homogenized Al – Cu – Li X2A66 alloy through processing maps and microstructural evolution,” J. Mater. Sci. Technol., 35, 2409 – 2421 (2019).

    Article  Google Scholar 

  8. A. Abd El-Aty, Y. Xu, X. Guo, et al., “Strengthening mechanisms, deformation behavior, and anisotropic mechanical properties of Al – Li alloys: A review,” J. Adv. Res., 10, 49 – 67 (2018).

    Article  CAS  Google Scholar 

  9. T. Dursun and C. Soutis, “Recent developments in advanced aircraft aluminium alloys,” Mater. Des., 56, 862 – 871 (2014).

    Article  CAS  Google Scholar 

  10. W. Fan, B. P. Kashyap, and M. C. Chaturvedi, “Anisotropy in flow and microstructural evolution during superplastic deformation of a layered-microstructured AA8090 Al – Li alloy,” Mater. Sci. Eng. A, 349(1 – 2), 166 – 182 (2003).

  11. J. Zhong, S. Zhong, Z. Q. Zheng, et al., “Fatigue crack initiation and early propagation behavior of 2A97 Al – Li alloy,” Trans. Nonferrous Met. Soc. Chin., 24(2), 303 – 309 (2014).

    Article  CAS  Google Scholar 

  12. H. Y. Li and X. C. Lu, “Springback and tensile strength of 2A97 aluminum alloy during age forming,” Trans. Nonferrous Met. Soc. Chin., 25(4), 1043 – 1049 (2015).

    Article  CAS  Google Scholar 

  13. C. Gao, Y. Luan, J. C. Yu, et al., “Effect of thermo-mechanical treatment process on microstructure and mechanical properties of 2A97 Al – Li alloy,” Trans. Nonferrous Met. Soc. Chin., 24, 2196 – 2202 (2014).

    Article  CAS  Google Scholar 

  14. Z. S. Yuan, L. U. Zheng, Y. H. Xie, et al., “Effects of RRAtreatments on microstructures and properties of a new high-strength aluminum-lithium alloy-2A97,” Chin. J. Aeronautics, 20, 187 – 192 (2007).

    Article  Google Scholar 

  15. C. Gao, R. Gao, and Y. Ma, “Microstructure and mechanical properties of friction spot welding aluminium – lithium 2A97 alloy,” Mater. Des., 83, 719 – 727 (2015).

    Article  CAS  Google Scholar 

  16. J. Ning, L. J. Zhang, Q. L. Bai, et al., “Comparison of the microstructure and mechanical performance of 2A97 Al – Li alloy joints between autogenous and non-autogenous laser welding,” Mater. Des., 120, 144 – 156 (2017).

    Article  CAS  Google Scholar 

  17. H. Chen, L. Fu, P. Liang, et al., “Defect features, texture and mechanical properties of friction stir welded lap joints of 2A97 Al – Li alloy thin sheets,” Mater. Charact,. 125, 160 – 173 (2017).

    Article  CAS  Google Scholar 

  18. H. Chen, L. Fu, and P. Liang, “Microstructure, texture and mechanical properties of friction stir welded butt joints of 2A97 Al – Li alloy ultra-thin sheets,” J. Alloys Compd., 692, 155 – 169 (2017).

    Article  CAS  Google Scholar 

  19. L. Chen, Y. N. Hu, E. G. He, et al., “Microstructural and failure mechanism of laser welded 2A97 Al – Li alloys via synchrotron 3D tomography,” Int. J. Lightweight Mater. Manufac., 1, 169 – 178 (2018).

    Google Scholar 

  20. X. Zhang, X. Zhou, T. Hashimoto, et al., “The influence of grain structure on the corrosion behaviour of 2A97-T3 Al – Cu – Li alloy,” Corros. Sci., 116, 14 – 21 (2017).

    Article  CAS  Google Scholar 

  21. X. Zhang, X. Zhou, T. Hashimoto, et al., “Corrosion behaviour of 2A97-T6 Al – Cu – Li alloy: The influence of non-uniform precipitation,” Corros. Sci., 132, 1 – 8 (2018).

    Article  CAS  Google Scholar 

  22. G. Chen, M. Chen, N. Wang, et al., “Hot forming process with synchronous cooling for AA2024 aluminum alloy and its application,” Int. J. Adv. Manufac. Technol., 86, 133 – 139 (2016).

    Article  Google Scholar 

  23. X. Fan, Z. He, K. Zheng, et al., “Strengthening behavior of Al – Cu – Mg alloy sheet in hot forming – quenching integrated process with cold – hot dies,” Mater. Des., 83, 557 – 565 (2015).

    Article  CAS  Google Scholar 

  24. X. Fan, Z. He, S. Yuan, et al., “Experimental investigation on hot forming – quenching integrated process of 6A02 aluminum alloy sheet,” Mater. Sci. Eng. A., 573, 154 – 160 (2013).

    Article  CAS  Google Scholar 

  25. H. Li, X. Guo, W. Wang, et al., “Forming performance of an as-quenched novel aluminum-lithium alloy,” Int. J. Adv. Manufac. Technol., 78, 659 – 666 (2015).

    Article  CAS  Google Scholar 

  26. M. L. Wang, P. P. Jin, J. H. Wang, et al., “Hot deformation behavior of as-quenched 7005 aluminum alloy,” Trans. Nonferrous Met. Soc. Chin., 24(9), 2796 – 2804 (2014).

    Article  CAS  Google Scholar 

  27. X.W. Yang, Z. H. Lai, J. C. Zhu, et al., “Hot compressive deformation behavior of the as-quenched A357 aluminum alloy,” Mater. Sci. Eng. B, 177, 1721 – 1725 (2012).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Zhang.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 5, pp. 10 – 15, May, 2022.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, P., Chen, MH. Structure and Properties of Al – Li Alloy after Different Artificial Ageing Regimes and Preliminary Tensile Deformation. Met Sci Heat Treat 64, 252–257 (2022). https://doi.org/10.1007/s11041-022-00795-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-022-00795-w

Keywords

Navigation