Skip to main content
Log in

Physical and Mechanical Properties of Powder-Metallurgy-Processed Titanium Alloys and Composites: A Comparative Analysis

  • ADDITIVE TECHNOLOGIES, POWDER AND COMPOSITE MATERIALS
  • Published:
Metal Science and Heat Treatment Aims and scope

The properties of existing Ti-based alloys and composites are reviewed. The effect of various alloying elements, reinforcement, and technological parameters of the powder metallurgy on the physical and mechanical properties of Ti-based alloys and composites is studied. Post-treatment conditions are discussed and optimal ways to lower the residual porosity of the composites are suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

References

  1. M. Ahmed, D. G. Savvakin, O. M. Ivasishin, and E. V. Pereloma, “The effect of thermo-mechanical processing and ageing time on microstructure and mechanical properties of powder metallurgy near (titanium alloys,” J. Alloys Comd., 714, 610 – 618 (2017).

  2. H. R. Zhang, H. Z. Niu, M. C. Zang, et al., “Microstructures and mechanical behavior of a near titanium alloy prepared by TiH2-based powder metallurgy,” Mat. Sci. Eng. A., 770, Art. 138570 (2020).

    Article  Google Scholar 

  3. K. Yoganandam, V. Mohanavel, J. Vairamuthu, and V. Kannadhasan, “Mechanical properties of titanium matrix composites fabricated via powder metallurgy method,” Mater. Today: Proc., 33, 3243 – 3247 (2020).

    CAS  Google Scholar 

  4. R. Frykholm and B. Brash, “Press and sintering of titanium,” Key Eng. Mat., 704, 369 – 377 (2016).

    Article  Google Scholar 

  5. A. Amigo, A. Vicente, C. R. M. Afonso, and V. Amigo, “Mechanical properties and the microstructure of β Ti-35Nb – 10Ta – xFe alloys obtained by powder,” Metals, 9(1), 76 (2019).

    Article  CAS  Google Scholar 

  6. T. Childerhouse and M. Jackson, “Near net shape manufacture of titanium alloy components from powder and wire: A review of state-of-the-art process routes,” Metals, 9(6), 689 (2019).

    Article  CAS  Google Scholar 

  7. R. Guo, B. Liu, R. Xu, et al., “Microstructure and mechanical properties of powder metallurgy high temperature titanium alloy with high Si content,” Mat. Sci. Eng. A., 777, Art. 138993 (2020).

    Article  Google Scholar 

  8. N. Kumar, A. Bharti, M. Dixit, and A. Nigam, “Effect of powder metallurgy process and its parameters on the mechanical and electrical properties of copper-based materials: Literature review,” Powder Metall. Met. Ceram., 59, 401 – 410 (2020).

    Article  Google Scholar 

  9. N. Kumar, A. Bharti, and H. Tripathi, “Investigation of microstructural and mechanical properties of magnesium matrix hybrid composite,” in: Advances in Mechanical Engineering, Springer, Singapore (2020), pp. 661 – 669.

  10. N. Kumar, A. Bharti, and K. K. Saxena, “A re-analysis of effect of various process parameters on the mechanical properties of Mg based MMCs fabricated by powder metallurgy technique,” Mater. Today: Proc., 26, 1953 – 1959 (2020).

    CAS  Google Scholar 

  11. Yu. A. Sokolov, N. V. Pavlushin, and S. Yu. Kondrat’ev, “New additive technologies based on ion beams,” Russ. Eng. Res., 36(12), 1012 – 1016 (2016).

  12. S. M. Castillo, S. Munoz, P. Trueba, et al., “Influence of the compaction pressure and sintering temperature on the mechanical properties of porous titanium for biomedical applications,” Metals, 9, 12, 1249 (2019).

  13. A. I. Rudskoy, S. Yu. Kondrat’ev, and Yu. A. Sokolov, “New approach to synthesis of powder and composite materials by electron beam. Part 1. Technological features of the process,” Met. Sci. Heat Treat., 58(1 – 2), 27 – 32 (2016).

  14. S. Jiang, L. J. Huang, Q. An, et al., “Study on titanium-magnesium composites with bicontinuous structure fabricated by powder metallurgy and ultrasonic infiltration,” J. Mech. Behav. Biomed. Mater., 81, 10 – 15 (2018).

    Article  CAS  Google Scholar 

  15. A. R. Contreras, M. Punset, J. A. Calero, et al., “Powder metallurgy with space holder for porous titanium implants: A review,” J. Mater. Sci. Technol., 76, 129 – 149 (2021).

    Article  Google Scholar 

  16. S. Yu. Kondrat’ev and Yu. A. Sokolov, “New approach to electron beam synthesis of powder and composite materials. Part 2. Practical results for alloy VT6,” Met. Sci. Heat Treat., 58(3 – 4), 165 – 169 (2016).

  17. R. Yamanoglu, “Network distribution of molybdenum among pure titanium powders for enhanced wear properties,” Met. Powder Rep., 76(1), 32 – 39 (2020).

    Article  Google Scholar 

  18. J. M. Oh, K. H. Heo, W. B. Kim, et al., “Sintering properties of Ti6Al4V alloys prepared using TiTiH2 powders,” Mater. Trans., 54, 119 – 121 (2013).

    Article  CAS  Google Scholar 

  19. P. R. Mondi, R. Mariappan, C. R. Kumar, et al., “Effect of sintering temperature on microstructure and mechanical properties of powder metallurgy titanium composites,” Int. J. Appl. Eng. Res., 10, 33,389 – 33,392 (2015).

  20. P. J. Teja, S. R. Shial, D. Chaira, and M. Masanta, “Development and characterization of Ti – TiC composites by powder metallurgy route using recycled machined Ti chips,” Mater. Today: Proc., 26, 3292 – 3296 (2020).

    Google Scholar 

  21. E. Reverte, S. A. Tsipas, and E. Gordo, “Oxidation and corrosion behavior of new low-cost Ti – 7Fe – 3Al and Ti – 7Fe – 5Cr alloys from titanium hydride powders,” Metals, 10(2), 254 (2020).

    Article  CAS  Google Scholar 

  22. J. C. Z. Carrullo, A. D. Borras, V. A. Borras, et al., “Electrochemical corrosion behavior and mechanical properties of Ti – Ag biomedical alloys obtained by two powder metallurgy processing routes,” J. Mech. Behav. Biomed. Mater., 112, Art. 104063 (2020).

    Article  Google Scholar 

  23. Y. Alshammari, M. Jia, F. Yang, and L. Bolzoni, “The effect of α + β forging on the mechanical properties and microstructure of binary titanium alloys produced via a cost-effective powder metallurgy route,” Mat. Sci. Eng. A., 769, Art. 138496 (2020).

    Article  Google Scholar 

  24. C. Zhang, F., Yang, Z. Guo, et al., “Oxygen scavenging, grain refinement and mechanical properties improvement in powder metallurgy titanium and titanium alloys with CaB6,” Powder Technol., 340, 362 – 369 (2018).

  25. C. Romero, F. Yang, C. Wei, and L. Bolzoni, “Thermomechanical processing of cost-affordable powder metallurgy Ti – 5Fe alloys from the blended elemental approach: Microstructure, tensile deformation behavior, and failure,” Metals, 10(11), 1405 (2020).

    Article  CAS  Google Scholar 

  26. M. Guden, E. Celik, A. Hýzal, et al., “Effects of compaction pressure and particle shape on the porosity and compression mechanical properties of sintered Ti6Al4V powder compacts for hard tissue implantation,” J. Biomed. Mater. Res., Part B. Appl. Biomater., 85(2), 547 – 555 (2008).

    Article  Google Scholar 

  27. Y. F. Yang and M. Qian, “Spark plasma sintering and hot pressing of titanium and titanium alloys,” in: Titanium Powder Metallurgy, Elsevier, Butterworth-Heinemann (2015), pp. 219 – 235.

    Chapter  Google Scholar 

  28. M. Rajadurai and A. R. Annamalai, “Effect of various sintering methods on microstructures and mechanical properties of titanium and its alloy (Ti – Al – V – X): A review, Russ. J. Non-Ferr. Met+, 58, 434 – 448 (2017).

  29. C. Yu, P. Cao, and M. I. Jones, “Titanium powder sintering in a graphite furnace and mechanical properties of sintered parts,” Metals, 7(3), 67 (2017).

    Article  Google Scholar 

  30. L. Bolzoni, E. M. R. Navas, and E. Gordo, “Quantifying the properties of low-cost powder metallurgy titanium alloys,” Mat. Sci. Eng. A., 687, 47 – 53 (2017).

    Article  CAS  Google Scholar 

  31. J. Lario, A. Vicente, and V. Amigo, “Evolution of the microstructure and mechanical properties of a Ti35Nb2Sn alloy post-processed by hot isostatic pressing for biomedical applications,” Metals, 11(7), 1027 (2021).

    Article  CAS  Google Scholar 

  32. L. Bolzoni, E. M. R. Navas, D. L. Zhang, and E. Gordo, “Modification of sintered titanium alloys by hot isostatic pressing,” Key Eng. Mat., 520, 63 – 69 (2012).

    Article  CAS  Google Scholar 

  33. O. Ivasishin, D. G. Savvakin, F. Froes, and K. Bondareva, “Synthesis of alloy Ti – 6Al – 4V with low residual porosity by a powder metallurgy method,” Powder Metall. Met. Ceram., 41, 382 – 390 (2002).

    Article  CAS  Google Scholar 

  34. L. Bolzoni, E. M. Ruiz-Navas, and E. Gordo, “Evaluation of the mechanical properties of powder metallurgy Ti – 6Al – 7Nb alloy,” J. Mech. Behav. Biomed. Mater., 67, 110 – 116 (2017).

    Article  CAS  Google Scholar 

  35. M. R. Baldissera, P. R. Rios, L. R. O. Hein, and H. R. Z. Sandim, “Three-dimensional characterization of pores in Ti – 6Al – 4V alloy,” Mater. Res., 14, 102 – 106 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 5, pp. 3 – 9, May, 2022.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, N., Bharti, A. Physical and Mechanical Properties of Powder-Metallurgy-Processed Titanium Alloys and Composites: A Comparative Analysis. Met Sci Heat Treat 64, 245–251 (2022). https://doi.org/10.1007/s11041-022-00794-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-022-00794-x

Keywords

Navigation