Skip to main content
Log in

Dynamics of Surface Properties of Steel Kh12MF During Cavitation-Erosion Treatment

  • SURFACE ENGINEERING
  • Published:
Metal Science and Heat Treatment Aims and scope

The results of studies on the surface of Kh12MF steel following exposure to ultrasonic treatment in a liquid medium are presented. The microhardness, roughness parameters, structure, and submicron structure of surface layers are determined. The mechanism of erosion is revealed along with its correlation with the parameters of micro- and submicron geometry of the sample surface. The possibility of using liquid ultrasonic treatment to improve the properties of heavy-duty materials and components having complex geometry is established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  1. B. E. Nolting and E. A. Neppiras, “Cavitation produced by ultrasonics,” Proc. Phys. Soc., 63B, 674 (1950); 64B, 1032 (1951).

  2. M. G. Sirotyuk, “Ultrasonic cavitation,” Acoustics, 7(3), 255 – 272 (1962).

    Google Scholar 

  3. B. A. Agranat, V. I. Bashkirov, and Yu. I. Kitaigorodsky, “Ultrasonic cleaning,” in: L. D. Rosenberg (ed.), Physical Principles of Ultrasonic Technology [in Russian], Moscow, Nauka (1970), pp. 165 – 252.

    Google Scholar 

  4. K. G. Ebeling, “Application of high-speed holocinematographic methods in cavitation research,” in: W. Lawterborn (ed.), Cavitation and Inhomogeneities in Underwater Acoustics, Berlin – New-York, Springer-Verlag (1980), pp. 35 – 41.

    Chapter  Google Scholar 

  5. I. N. Bogachev, Cavitation Erosion and Cavitation-Resistant Alloys [in Russian], Moscow, Metallurgiya (1972).

    Google Scholar 

  6. A. P. Panov and V. M. Prikhod’ko, “Cavitation erosion in a field of rod radiator,” in: Appl. Ultras. Metal.: Proc. [in Russian], National University of Science and Technology “MISIS,” Moscow (1977), No. 90, pp. 30 – 35.

  7. V. M. Prikhod’ko, Improving the Efficiency of Ultrasonic Cleaning of Parts in Fuel-Injection Equipment of an Automotive Engine during Repair, Author’s Abstract of Candidate’s Thesis [in Russian], Moscow (1975).

  8. S. Vaidya and C. M. Preece, “Cavitation erosion of age-hardenable aluminum alloys,” Metall. Trans. A, 9, 299 – 307 (1978).

    Article  Google Scholar 

  9. L. D. Rosenberg (ed.), Physics and Technology of High-Power Ultrasound. Vol. 3, Physical Principles of Ultrasonic Technology [in Russian], Moscow, Nauka (1970).

  10. A. B. Agranat, I. V. Bashkirov and Yu. I. Kitaigorodsky, “Method for improving efficiency of ultrasonic impact on processes occurring in fluids,” Ultrason. Tech., 3, 38 (1964).

    Google Scholar 

  11. B. Niemczewski, “Observations of water cavitation intensity under practical ultrasonic cleaning conditions,” Ultrason. Sonochem., 14(1), 13 – 18 (2007).

    Article  CAS  Google Scholar 

  12. D. S. Fatyukhin, “Experimental studies of ultrasonic cleaning parameters influencing cavitation erosion,” Vest. Mosk. Avtom.-Dor. Gos. Telh. Univ. (MADI), No. 4(27), 38 – 42 (2011).

  13. L. P. Wang, J. H. Liao, Z. H. Ueda, et al., “Microbubbles for effective cleaning of metal surfaces without chemical agents,” Preprint of Ultrason. Sonochem. (2022) (Available online: https://ssrn.com/abstract=3914052, cited December 1, 2021).

  14. J. A. Sarasua Miranda, L. Ruiz-Rubio, E. Aranzabe Basterrechea, et al., “An efficient green process for large surfaces with low water consumption,” Processes, 9, 585 (2021).

    Article  Google Scholar 

  15. V. F. Kazantsev, S. Y. Kuznetsov, S. K. Sundukov, et al., “Ultrasound treatment of curved contours and complex surfaces,” Russ. Eng. Res., 37, 1074 – 1076 (2017).

    Article  Google Scholar 

  16. R. I. Nigmetzyanov, V. F. Kazantsev, V. M. Prikhod’ko, et al., “Improvement in ultrasound liquid machining by activating cavitational clusters,” Russ. Eng. Res., 39, 699 – 702 (2019).

    Article  Google Scholar 

  17. R. Park, M. Choi, E. H. Park, et al., “Comparing cleaning effects of gas and vapor bubbles in ultrasonic fields,” Ultrason. Sonochem., 76, 105618 (2021).

    Article  CAS  Google Scholar 

  18. B. Verhaagen, T. Zanderink, and D. F. Rivas, “Ultrasonic cleaning of 3d printed objects and cleaning challenge devices,” Appl. Acoust., 103B, 172 – 181 (2016).

    Article  Google Scholar 

  19. M. O. Lamminen, H. W. Walker, and L. K. Weavers, “Mechanisms and factors influencing the ultrasonic cleaning of particle-fouled ceramic membranes,” J. Membr. Sci., 237(1–2), 213 – 223 (2004).

    Article  CAS  Google Scholar 

  20. S. Hattori and T. Itoh, “Cavitation erosion resistance of plastics,” Wear, 271(7–8), 1103 – 1108 (2011).

    Article  CAS  Google Scholar 

  21. M. Dojcinovic, O. Eric, D. Rajnovic, L. Sidjanin, and S. Balos, “Effect of austempering temperature on cavitation behavior of unalloyed ADI material,” Mater. Charact., 82, 66 – 72 (2013).

    Article  CAS  Google Scholar 

  22. E. H. R. Wade and C. M. Preece, “Cavitation erosion of iron and steel,” Metall. Trans. A, 9, 1299 – 1310 (1978).

    Article  Google Scholar 

  23. F. G. Hammit, Cavitation and Multiphase Flow Phenomena, New York, McGraw Hill (1980).

    Google Scholar 

  24. J. Wang, Y. Gao, Z. You, et al., “The effect of ultrasonic cleaning on the secondary electron yield, surface topography, and surface chemistry of laser treated aluminum alloy,” Materials, 13, 296 (2020).

    Article  CAS  Google Scholar 

  25. S. Verdan, G. Burato, M. Comet, L. Reinert, and H. Fuzellier, “Structural changes of metallic surfaces induced by ultrasound,” Ultrason. Sonochem., 10(4–5), 291 – 295 (2003).

    Article  CAS  Google Scholar 

  26. Y. Zhukova, S. A. Ulasevich, J. W. C. Dunlop, et al., “Ultrasound-driven titanium modification with formation of titania based nanofoam surfaces,” Ultrason. Sonochem., 36, 146 – 154 (2017).

    Article  CAS  Google Scholar 

  27. Q. Jiao, X. Tan, J. Zhu, S. Feng, and J. Gao, “Effects of ultrasonic agitation and surfactant additive on surface roughness of Si (111) crystal plane in alkaline KOH solution,” Ultrason. Sonochem., 31, 222 – 226 (2016).

    Article  CAS  Google Scholar 

  28. Y. Zhao, C. Bao, R. Feng, and T. J. Mason, “New etching method of PVC plastic for plating by ultrasound,” J. Appl. Polym. Sci., 68(9), 1411 – 1416 (1998).

    Article  CAS  Google Scholar 

  29. V. A. Aleksandrov, S. K. Sundukov, D. S. Fatyukhin, and A. A. Filatova, “Ultrasonic methods for improving object surface quality prepared by corrosion-resistant steel powder selective laser melting,” Met. Sci. Heat Treat., 60, 381 – 386 (2018).

    Article  CAS  Google Scholar 

  30. S. N. Grigoriev, A. S. Metel, T. V. Tarasova, et al., “Effect of cavitation erosion wear, vibration tumbling, and heat treatment on additively manufactured surface quality and properties,” Metals, 10, 1540 (2020).

    Article  CAS  Google Scholar 

  31. D. S. Fatyukhin, “Variation in surface roughness of machine parts under ultrasonic liquid treatment,” Vest. Mosk. Avtom.-Dor. Gos. Tech. Univ. (MADI), No. 4(23), 30 – 35 (2010).

  32. O. V. Chudina, V. A. Aleksandrov, and D. S. Fatyukhin, “Influence of ultrasonic cavitation on the state of surface of constructional steel,” Uproch. Tech. Pokr., No. 2(74), 3 – 6 (2011).

  33. R. Altay, A. K. Sadaghian, M. I. Sevgen, et al., “Numerical and experimental studies on the effect of surface roughness and ultrasonic frequency on bubble dynamics in acoustic cavitation,” Energies, 13, 1126 (2020).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Sundukov.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 4, pp. 50 – 56, April, 2022.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ningmetzyanov, R.I., Sundukov, S.K., Fatyukhin, D.S. et al. Dynamics of Surface Properties of Steel Kh12MF During Cavitation-Erosion Treatment. Met Sci Heat Treat 64, 236–242 (2022). https://doi.org/10.1007/s11041-022-00791-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-022-00791-0

Keywords

Navigation