Skip to main content

Advertisement

Log in

Influence of Sliding Rate and Load with Friction on NiTi Shape Memory Alloy Wear Resistance

  • FUNCTIONAL ALLOYS
  • Published:
Metal Science and Heat Treatment Aims and scope

A Correction to this article was published on 01 January 2023

This article has been updated

The effect of load and sliding rate on wear resistance of a NiTi alloy in martensitic and austenitic conditions with dry friction by a ball–disk scheme is studied. Martensitic transformation temperature and wear mechanism are analyzed using differential calorimetry, scanning electron microscopy, and energy-dispersive spectrum analysis. It is shown that friction coefficient decreases by about 40% with increase in load, and sliding rate has a smaller and ambiguous effect on NiTi alloy friction characteristics. Austenitic phase exhibits a slower wear rate than martensitic phase with all of the friction regimes used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

References

  1. B. O. Kucukyildirim, “The effect of aging under loading on the phase transformation behavior of near-equiatomic niti shape memory alloy,” J. Mater. Eng. Perform., 24, 3228 – 3240 (2015).

    Article  CAS  Google Scholar 

  2. V. Di. Cocco, F. Iacoviello, and S. Natali, “Fatigue microstructural evolution in pseudo elastic NiTi alloy,” Proc. Struct. Integrity, 2, 1457 – 1464 (2016).

    Article  Google Scholar 

  3. L. Qian, Z. Zhou, and Q. Sun, “The role of phase transition in the fretting behavior of NiTi shape memory alloy,” Wear, 259(6), 309 – 318 (2005).

    Article  CAS  Google Scholar 

  4. K. Nurveren, A. Akdonan Eker, and W. M. Huang, “Evolution of transformation characteristics with heatingcooling rate in NiTi shape memory alloys,” J. Mater. Proc. Technol., 196(1–3), 129 – 134 (2008).

    Article  CAS  Google Scholar 

  5. W. Tillmann and S. Momeni, “Influence of in-situ and post annealing technique on tribological performance of NiTi SMA thin films,” Surf. Coat. Technol., 276, 286 – 295 (2015).

    Article  CAS  Google Scholar 

  6. M. Mehdi, K. Farokhzadeh, and A. Edrisy, “Dry sliding wear behavior of superelastic Ti – 10V – 2Fe – 3Al – titanium alloy,” Wear, 350 – 351(1), 10 – 20 (2016).

  7. N. Levintant-Zayonts, G. Starzynski, M. Kopec, and S. Kucharski, “Characterization of NiTi SMAin its unusual behaviour in wear tests,” Tribol. Int., 137, 313 – 323 (2019).

    Article  CAS  Google Scholar 

  8. L. Yan, Y. Liu, and E. Liu, “Wear behaviour of martensitic NiTi shape memory alloy under ball-on-disk sliding tests,” Tribol. Int., 66(1), 219 – 224 (2013).

    Article  CAS  Google Scholar 

  9. W. Yan, “Theoretical investigation of wear-resistance mechanism of superelastic shape memory alloy NiTi,” Mater. Sci. Eng. A, 427(1–2), 348 – 355 (2006).

    Article  Google Scholar 

  10. A. P. Markopoulos, I. S. Pressas, and D. E. Manolakos, “Manufacturing processes of shape memory alloys,” Mater. Form. Machining: Res. Devel., 1, 155 – 180 (2016).

    Article  Google Scholar 

  11. Z. Yang, M. Stossel, and J. Wang, “Microstructural evolution and surface strengthening of pulse-laser treated TiNi multilayer thin films,” Extreme Mechan. Lett., 4(1), 45 – 51 (2015).

    Article  Google Scholar 

  12. W. Y. Yan, Q. P. Sun, X. Q. Feng, and L. M. Qian, “Analysis of spherical indentation of superelastic shape memory alloys,” Int. J. Solids Struct., 44(1), 1 – 17 (2007).

    Article  CAS  Google Scholar 

  13. O. G. Zotov and S. Yu. Kondrat’ev, “Antifriction properties of copper alloys with convertible martensite in the structure,” Trenie Iznos, 14(2), 419 – 422 (1993).

    CAS  Google Scholar 

  14. N. G. Kolbasnikov, S. Yu. Kondrat’ev, and S. G. Fomin, “Mechanical properties of alloys with reverse martensite transformations,” Probl. Proch., 3, 34 – 42 (1992).

    Google Scholar 

  15. N. G. Kolbasnikov, S. Yu. Kondrat’ev, S. G. Fomin, and S. V. Shchukin, “Mechanical properties of alloys with reversible martensitic transformation,” Strength Mater., 24(3), 262 – 269 (1992).

    Article  Google Scholar 

  16. S. Yu. Kondrat’ev, O. G. Zotov, G. Ya. Yaroslavskii, et al., “Investigation of interrelationship between damping capacity and mechanical properties as well as morphology of martensite in alloys with reversible martensite transformation,” Probl. Proch., 14B(3), 79 – 82 (1983).

    Google Scholar 

  17. S. Yu. Kondrat’ev, G. Y. Yaroslavskii, B. S. Chaikovskii, and V. V. Matveev, “Effect of doping and hardening conditions on mechanical properties and microstructure of Br.A10 alloy,” Probl. Proch., 7(145), 98 – 101 (1981).

  18. L. Yan and Y. Liu, “Effect of deformation mode on the wear behavior of NiTi shape memory alloys,” Shape Memory Superelasticity, 2(2), 204 – 217 (2016).

    Article  Google Scholar 

  19. M. Abedini, H. M. Ghasemi, and M. NiliAhmadabad, “Tribological behavior of NiTi alloy in martensitic and austenitic states,” Mater. Design, 30(10), 4493 – 4497 (2009).

    Article  CAS  Google Scholar 

  20. L. Yan and Y. Liu, “Wear behavior of austenitic NiTi shape memory alloy,” Shape Memory Superelasticity, 1(1), 56 – 68 (2015).

    Article  Google Scholar 

  21. L. Zorko and R. Rudolf, “Metallographic sample preparation of orthodontic Ni – Ti wire,” Assoc. Metall. Eng., 15(4), 267 – 274 (2009).

    CAS  Google Scholar 

  22. K. Heinz and Z. Gahr, “Sliding wear,” Tribol. Ser., 10, 351 – 495 (1987).

    Article  Google Scholar 

  23. M. Abedini, H. M. Ghasemi, and M. N. Ahmadabadi, “Tribological behavior of NiTi alloy against 52100 steel and WC at elevated temperatures,” Mater. Charact., 61(7), 689 – 695 (2010).

    Article  CAS  Google Scholar 

  24. R. Aliasgarian, H. M. Ghasemi, and M. Abedini, “Tribological behavior of heat treated Ni-rich NiTi alloy,” J. Tribol., 133(3), 1 – 6 (2011).

    Article  Google Scholar 

  25. H. Wang, Y. Kalchev, H. Wang, et al., “Surface modification of NiTi alloy by ultrashort pulsed laser shock peening,” Surf. Coat. Technol., 394(1), 125899 (2020).

    Article  CAS  Google Scholar 

Download references

We would like to thank Advanced Materials Research Group (AMRG) from Yildiz Technical University, Mechanical Engineering Department, for providing the laboratory conditions during our studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Avcil.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 4, pp. 23 – 31, April, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avcil, A., Eker, A.A. & Kucukyildirim, B.O. Influence of Sliding Rate and Load with Friction on NiTi Shape Memory Alloy Wear Resistance. Met Sci Heat Treat 64, 211–218 (2022). https://doi.org/10.1007/s11041-022-00786-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-022-00786-x

Keywords

Navigation