Skip to main content
Log in

Special Features of Growth of Intermetallic Phases during Annealing of Nickel-Aluminum Composites

  • Published:
Metal Science and Heat Treatment Aims and scope

Layered metallic-intermetallic composites formed by explosion welding of nickel and aluminum plates and subsequent annealing of the bimetal for 1 – 100 h at 550, 570, 590 and 610°C are studied. X-ray diffraction analysis is used to determine special features of the structure of interfaces of bimetallic billets after welding and to estimate their contribution into the processes of nucleation and growth of layers of nickel aluminide. It is shown that the formation of the intermetallic is determined primarily by volume diffusion. The activation energy of the growth of the nickel aluminide layer depends on the structural state of the diffusion pair and on the presence of oxide films on the interfaces of the metallic plates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. L. M. Gurevich et al., Layered Intermetallic Composites and Coatings [in Russian], Metallurgizdat, Moscow (2016), 346 p.

    Google Scholar 

  2. G. P. Cherepanov, Fracture Mechanics of Composite Materials [in Russian], Nauka, Moscow (1983), 296 p.

    Google Scholar 

  3. K. I. Portnoy, “High-temperature materials and coatings based on intermetallics of the nickel-aluminum system,” Poroshk. Metall., 206(2), 33 – 39 (1980).

    Google Scholar 

  4. G. H. S. F. L. Carvalho, et al., “Aluminum-to-steel cladding by explosive welding,” Metals (Basel), 10(8), 1062 (2020) 10.3390/met10081062.

  5. K. Mizuuchi, et al., “Properties of Ni-aluminides-reinforced Ni-matrix laminates synthesized by pulsed-current hot pressing (PCHP),” Mater. Sci. Eng. A, 428(1 – 2), 169 – 174 (2006) https://doi.org/10.1016/j.msea.2006.04.113.

  6. I. Kwiecien, et al., “Microstructure of the interface zone after explosive welding and further annealing of A1050_Ni201 clads using various joining conditions,” J. Mater. Sci., 55, 9163 – 9172 (2020) 10.1007/s10853-019-04317-7.

  7. I. A. Bataev, et al., “Explosively welded multilayer Ni – Al composites,” Mater. Design, 88, 1982 – 1087 (2015) (10.1007/s10853-019-04317-7).

  8. A. Rohatgi, et al., “Resistance-curve and fracture behavior of Ti – Al3Ti metallic-intermetallic laminate (MIL) composites,” Acta Mater., 51(10), 2933 – 2957 (2003) https://doi.org/10.1016/S1359-6454(03)00108-3.

    Article  CAS  Google Scholar 

  9. D. M. Fronczek, et al., “Structural properties of Ti/Al clads manufactured by explosive welding and annealing,” Mater. Design, 91, 80 – 89 (2016) 10.1016/j.matdes.2015.11.087.

  10. A. M. Patselov, V. V. Rybin, and B. A. Grinberg, “Synthesis and properties of layered composites of the Ti – Al system with intermetallic layers,” Deform. Razrush., No. 6, 27 – 31 (2010).

    Google Scholar 

  11. D. V. Lazurenko, et al., “Explosively welded multilayer Ti – Al composites: Structure and transformation during heat treatment,” Mater. Design, 102, 122 – 130 (2016) 10.1016/j.matdes.2016.04.037.

  12. G. H. S. F. L. Garvalho, et al., “Weldability of aluminium-copper in explosive welding,” Int. J. Adv. Manuf. Technol., 103, 3211 – 3221 (2019) 10.1007/s00170-019-03841-9.

  13. Yu. P. Trykov, V. G. Shmorgun, and O. V. Slautin, “Kinetics of growth of diffusion layers in a copper-aluminum bimetal obtained by a complex process,” Persp. Mater., No. 3, 83 – 88 (2003) http://j-pm.imet-db.ru/?archive&a=209.

    Google Scholar 

  14. V. G. Shmorgun, et al., “Effect of high-temperature heat treatment on the structure and properties of a cooper-aluminum layered intermetallic composite,” Konstr. Komp. Mater., No. 2, 37 – 42 (2007).

    Google Scholar 

  15. H.-S. Ding, et al., “Processing and microstructure of TiNi SMA strips prepared by cold roll-bonding and annealing of multilayer,” Mater. Sci. Eng. A, 408(1 – 2), 182 – 189 (2005) https://doi.org/10.1016/j.msea.2005.07.055.

  16. V. S. Srivastava, et al., “Microstructural characteristics of accumulative roll-bonded Ni – Al-based metal–intermetallic laminate composite,” J. Mater. Eng. Perform., 21(9), 1912 – 1918 (2012) https://doi.org/10.1007/s11665-011-0114-y.

    Article  CAS  Google Scholar 

  17. T. S. Ogneva, Formation of Multilayer “Metal–Intermetallic” Composite Materials Based on Nickel and Aluminum with the Use of Explosive Welding and Spark Plasma Sintering, Author’s Abstract of Doctoral’s Thesis [in Russian], NGTU (2016), 239 p. (https://www.nstu.ru/files/dissertations/dissertaciya ogneva t.s1. 146941909533.pdf).

  18. M. Konieczny, et al., “Processing, microstructure and properties of laminated Ni-intermetallic composites synthesized using Ni sheets and Al foils,” Arch. Metall. Mater., 56(3), 693 – 702 (2011) https://doi.org/10.2478/v10172-011-0076-y.

    Article  CAS  Google Scholar 

  19. S. B. Jung, et al., “Reaction diffusion and formation of Al3Ni2 phases in the Al – Ni system,” J. Mater. Sci. Lett., 12(21), 1684 – 1686 (1993) https://doi.org/10.1007/BF00418831.

    Article  CAS  Google Scholar 

  20. X. Ren, et al., “Formation and growth kinetics of intermediate phases in Ni – Al diffusion couples,” J. Wuhan Univ. Technol. Sci. Ed., 24(5), 787 – 790 (2009) https://doi.org/10.1007/s11595-009-5787-9.

    Article  CAS  Google Scholar 

  21. A. M. Rashidi and A. Amadeh, “Growth kinetics of aluminide layers on nanocrystalline nickel,” Int. J. Mod. Phys. Conf. Ser., 5, 654 – 660 (2012) 10.1142/s2010194512002590.

  22. D. V. Pavlikova, et al., “Influence of the explosively welded composites structure on the diffusion processes occurring during annealing,” Ifost. IEEE, 183 – 186 (2013) https://doi.org/10.1109/IFOST.2013.6616967.

  23. I. A. Bataev, “Formation of structure of explosion-welded materials: experimental studies and numerical simulation,” Obrab. Met., Tekhnol., Oborud., Instr., 77(4), 55 – 67 (2017) 10.17212/1994-6309-2017-4-55-67.

  24. G. A. Lopez, et al., “Phase characterization of diffusion soldered Ni/Al/Ni interconnections,” Interface Sci., No. 10, 13 – 19 (2002).

    Article  CAS  Google Scholar 

  25. A. Furuto and M. Kajihara, “Numerical analysis for kinetics of reactive diffusion controlled by boundary and volume diffusion in a hypothetical binary system,” Mater. Trans., 49(2), 294 – 303 (2008) (10.2320_matertrans.MRA2007192).

  26. L. Xu, et al., “Growth of intermetallic layer in multi-laminated Ti/Al diffusion couples,” Mater. Sci. Eng. A, 435 – 436, 638 – 647 (2006) 10.1016/j.msea.2006.07.077.

  27. M. Jain and S. Gupta, “Formation of intermetallic compounds in the Ni – Al – Si ternary system,” Mater. Charact., 51(4), 243 – 257 (2003) https://doi.org/10.1016/j.matchar.2003.12.002.

    Article  CAS  Google Scholar 

  28. M. Adabi and A. A. Amadeh, “Formation mechanisms of Ni – Al intermetallics during heat treatment of Ni coatings on 6061 Al substrate,” Trans. Nonferr. Met. Soc. China, 25(12), 3959 – 3966 (2015) https://doi.org/10.1016/S1003-6326(15)64073-0.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. Yu. Emurlaeva.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 12, pp. 27 – 34, December, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emurlaeva, Y.Y., Ryabinkina, P.A., Lazurenko, D.V. et al. Special Features of Growth of Intermetallic Phases during Annealing of Nickel-Aluminum Composites. Met Sci Heat Treat 63, 660–666 (2022). https://doi.org/10.1007/s11041-022-00745-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-022-00745-6

Key words

Navigation