Skip to main content
Log in

Thermomechanical Behavior and Structure Formation of Shape Memory Ti – Zr – Nb Alloy for Medical Applications

  • TITANIUM ALLOYS
  • Published:
Metal Science and Heat Treatment Aims and scope

Special features of thermomechanical behavior and structure formation of shape memory alloy Ti – 19 at.% Zr – 14 at.% Nb for medical applications are studied under the conditions of upsetting at 600 – 1000°C with strain rates 0.1, 1, and 10 sec–1. The main parameters of the compressive stress–strain diagram are determined. Metallographic and x-ray diffraction analyses of the alloy are performed. The Vickers hardness of the specimens is measured. The alloy is shown to be well deformable under the conditions studied, and its sensitivity to the deformation rate is not high. Recommendations are developed for thermomechanical treatment of semiproducts from the Ti – Zr – Nb alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. Here and below in the paper the content of elements is given in atomic percent if not mentioned specially.

References

  1. S. Miyazaki, H. Y. Kim, and H. Hosoda, “Development and characterization of Ni-free Ti-base shape memory and superelastic alloys,” Mater. Sci. Eng. A, 438 – 440 (spec. iss.), 18 – 24 (2006).

  2. A. Biesiekierski, J. Wang, M. A. Gepreel, et al., “A new look at biomedical Ti-based shape memory alloys,” Acta Biomater., 8, 1661 – 1669 (2012).

    Article  CAS  Google Scholar 

  3. P. Laheurte, F. Prima, A. Eberhardt, et al., “Mechanical properties of low modulus β titanium alloys designed from the electronic approach,” J. Mech. Behav. Biomed. Mater., 3(8), 565 – 573 (2010).

    Article  CAS  Google Scholar 

  4. S. Prokoshkin, V. Brailovski, S. Dubinskiy, et al., “Manufacturing, structure control, and functional testing of Ti – Nb-based SMA for medical application,” Shape Mem. Superelast., 2(2), 130 – 144 (2016).

    Article  Google Scholar 

  5. V. Sheremetyev, M. Petrzhik, Y. Zhukova, et al., “Structural, physical, chemical, and biological surface characterization of thermomechanically treated Ti – Nb-based alloys for bone implants,” J. Biomed. Mater. Res., Pt B, Appl. Biomater., 108(3), 647 – 662 (2020).

    Article  CAS  Google Scholar 

  6. H. Y. Kim, J. Fu, H. Tobe, et al., “Crystal structure, transformation strain, and superplastic property of Ti – Nb – Zr and Ti – Nb – Ta alloys,” Shape Mem. Superelast., 1(2), 107 – 116 (2015).

    Article  Google Scholar 

  7. A. S. Konopatsky, S. M. Dubinskiy, Yu. S. Zhukova, et al., “Manufacturing and characterization of novel Ti – Zr-based alloys,”, Mater. Today, Proc., 4(3), 4856 – 4860 (2017).

    Article  Google Scholar 

  8. K. M. Kim, H. Y. Kim, and S. Miyazaki, “Effect of Zr content on phase stability, deformation behavior, and Young’s modulus in Ti – Nb – Zr alloys,” Materials, 13(2), 476 (2020).

    Article  CAS  Google Scholar 

  9. M. F. Ijaz, H. Y. Kim, H. Hosoda, et al., “Superelastic properties of biomedical (Ti – Zr) – Mo – Sn alloys,” Mater. Sci. Eng. C, Mater. Biol. Appl., 48, 11 – 20 (2014).

    Article  CAS  Google Scholar 

  10. S. Guo, Y. Shi, G. Liu, et al., “Design and fabrication of a (β + α″) dual-phase Ti – Nb – Sn alloy with linear deformation behavior for biomedical applications,” J. Alloys Compd., 805, 517 – 521 (2019).

    Article  CAS  Google Scholar 

  11. J. Fu, A. Yamamoto, H. Y. Kim, et al., “Novel Ti-base superelastic alloys with large recovery strain and excellent biocompatibility,” Acta Biomater., 17, 56 – 67 (2015).

    Article  CAS  Google Scholar 

  12. R. Yang, K. M. Rahman, A. N. Bakhymberdiyev, et al., “Mechanical behaviour of Ti – Nb – Hf alloys,” Mater. Sci. Eng. A, 740 – 741, 398 – 409 (2019).

  13. A. R. Vieira Nunes, S. Borborema, L. S. Araujo et, al., “Influence of thermo-mechanical processing on structure and mechanical properties of a new metastable β Ti – 29Nb – 2Mo – 6Zr alloy with low Young’s modulus,” J. Alloys Compd., 820, 153078 (2020).

  14. A. Kudryashova, V. Sheremetyev, K. Lukashevich, et al., “Effect of combined thermomechanical treatment on the microstructure, texture and superelastic properties of Ti – 18Zr – 14Nb alloy for orthopedic implants,” J. Alloys Compd., 843, 156066 (2020).

  15. Q. Li, M. Niinomi, M. Nakai, et al., “Effect of Zr on super-elasticity and mechanical properties of Ti – 24 at% Nb – (0, 2, 4) at% Zr alloy subjected to aging treatment,” Mater. Sci. Eng. A, 536, 197 – 206 (2012).

    Article  CAS  Google Scholar 

  16. V. Sheremetyev, A. Kudryashova, S. Dubinskiy, et al., “Structure and functional properties of metastable beta Ti – 18Zr – 14Nb (at.%) alloy for biomedical applications to radial shear rolling and thermomechanical treatment,” J. Alloys Compd., 737, 678 – 683 (2018).

    Article  CAS  Google Scholar 

  17. V. Sheremetyev, A. Kudryashova, V. Cheverikin, et al., “Hot radial shear rolling for rotary forging of metastable beta Ti – 18Zr – 14Nb (at.%) alloy for bone implants: Microstructure, texture and functional properties,” J. Alloys Compd., 800, 320 – 326 (2019).

    Article  CAS  Google Scholar 

  18. M. L. Bernshtein, S. V. Dobatkin, L. M. Kaputkina, and S. D. Prokoshkin, Hot Deformation Diagrams, Structure and Properties of Steels [in Russian], Metallurgiya, Moscow (1989).

  19. X. F. Bai, Y. Q. Zhao, and W. D. Zheng, “Characterization of hot deformation behavior of a biomedical titanium alloy TLM,” Mater. Sci. Eng. A, 598, 236 – 243 (2014).

  20. F. Warchomicka, C. Poletti, and M. Stockinger, “Study of the hot deformation behavior in Ti – 5Al – 5Mo – 5V – 3Cr – 1Zr,” Mater. Sci. Eng. A, 528, 8277 – 8285 (2011).

  21. V. V. Balasubrahmanyam and Y. V. R. K. Prasad, “Deformation behavior of beta titanium alloy Ti – 10V – 4.5Fe – 1.5Al in hot upset forging,” Mater. Sci. Eng. A, 336(1 – 2), 150 – 158 (2002).

  22. S. A. Saltykov, Stereometric Metallography [in Russian], Metallurgiya, Moscow (1986), 272 p.

  23. Shuanglei Li, Yeon-wook Kim, Mi-seon Choi, et al., “Microstructure, mechanical and superelastic behaviors in Ni-free Ti – Zr – Nb – Sn shape memory alloy fibers prepared by rapid solidification processing,” Mater. Sci. Eng. A, 782, 139283 (2020).

  24. B. C. Zolotarevskii, Mechanical Properties of Metals [in Russian], MISiS, Moscow (1998), 400 p.

  25. Ta Ding Suan, V. A. Sheremet’ev, A. A. Kudryashova et. al., “A comparative study of hot radial-shear rolling of billets from superelastic alloy of the Ti – Zr – Nb system and commercial alloy VT6 by the method of QForm simulation,” Izv. Vysh. Uchebn. Zaved., Tsvetn. Met., 6, 32 – 43 (2020).

  26. V. Brailovski, V. Kalinicheva, M. Letenneur, et al., “Control of density and grain structure of a laser powder bed-fused superelastic Ti – 18Zr – 14Nb alloy,” Metals, 10(12), 1697 (2020).

    Article  CAS  Google Scholar 

  27. V. Brailovski, S. Prokoshkin, M. Gauthier, et al., “Bulk and porous metastable beta Ti – Nb – Zr(Ta) alloys for biomedical applications,” Mater. Sci. Eng. C, 31, 643 – 657 (2011).

    Article  CAS  Google Scholar 

  28. S. M. Dubinskii, S. D. Prokoshkin, V. Brailovski, et al., “Formation of structure under thermomechanical treatment of Ti – Nb – Zr(Ta) alloys and manifestation of shape memory effect,” Fiz. Met. Metalloved., No. 5, 503 – 516 (2011).

Download references

The work has been performed with financial support of the Russian Science Foundation (Project No. 20-63-47063).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Sheremet’ev.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 8, pp. 3 – 12, August, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheremet’ev, V.A., Akhmadkulov, O.B., Komarov, V.S. et al. Thermomechanical Behavior and Structure Formation of Shape Memory Ti – Zr – Nb Alloy for Medical Applications. Met Sci Heat Treat 63, 403–413 (2021). https://doi.org/10.1007/s11041-021-00703-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-021-00703-8

Key words

Navigation