Skip to main content
Log in

Effect of Boronizing on Operating Stability of Steel AISI 304L under Erosion Impact of Hard Particles

  • Published:
Metal Science and Heat Treatment Aims and scope

The effect of solid boronizing at 950°C for 2 and 4 h on the phase composition, microstructure, hardness and abrasive wear of steel AISI 304L is studied under the impact of a flow of hard particles. The boronized steel is shown to consist of three layers (metal boride, porous layer and matrix) from the external surface to the center. The hardness of the boride is much higher than that of the matrix phase. The wear resistance of the steel is the highest after the 2-h boronizing, and the wear depends on the angle of impact of the hard particles on its surface. With growth of the duration of the boronizing the wear behavior of the steel changes from ductile one to brittle one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. Y. Kayali, I. Gunes, and S. Ulu, “Diffusion kinetics of borided AISI 52100 and AISI 440C steels,” Vacuum, 86, 1428 – 1434 (2012).

    Article  CAS  Google Scholar 

  2. E. Dokumaci, I. Ozkan, and B. Onay, “Effect of boronizing on the cyclic oxidation of stainless steel,” Surf. Coat. Technol., 232, 22 – 25 (2013).

    Article  CAS  Google Scholar 

  3. A. Gunen, M. S. Karakas, B. Kurt, and A. Calik, “Corrosion behavior of borided AISI 304 austenitic stainless steel,” Anti-Cor. Meth. Mater., 61, 112 – 119 (2014).

    Article  CAS  Google Scholar 

  4. I. Gunes and I. Yildiz, “Investigation of adhesion and tribological behavior of borided AISI 310,” Revista Mater., 21, 61 – 71 (2016).

    Article  CAS  Google Scholar 

  5. Y. Kayali, “Investigation of the diffusion kinetics of borided stainless steels,” Phys. Met. Metallogr., 114, 1061 – 1068 (2013).

    Article  Google Scholar 

  6. I. Gunez, M. Enlogan, and A. G. Celik, “Corrosion behavior and characterization of plasma nitrided and borided AISI M2 steel,” Mater. Res., 17, 612 – 618 (2014).

    Article  Google Scholar 

  7. E. Mertgenc, O. F. Kesici, and Y. Kayali, “Investigation of wear properties of borided austenitic stainless steel at different temperatures and time,” Mater. Res. Express, 6, 076420 (2019).

    Article  CAS  Google Scholar 

  8. G. A. Rodriguez-Castro, L. F. Jimenez-Tinoco, J. V. Mendez-Mendez, et al., “Damage mechanisms in AISI 304 borided steel: scratch and Daimler-Benz adhesion tests,” Mater. Res., 18, 1346 – 1353 (2015).

    Article  Google Scholar 

  9. C. D. Resendiz-Calderon, G. A. Rodriguez-Castro, A. Meneses-Amador, et al., “Micro-abrasion wear of borided 316L stainless steel and AISI 1018 steel,” J. Mater. Eng. Perform., 16, 5599 – 5609 (2017).

    Article  Google Scholar 

  10. G. A. Rodriguez-Castro, R. C. Vega-Moron, A. Meneses-Amador, et al., “Multi-pass scratch test behavior of AISI 316L borided steel,” Surf. Coat. Technol., 307, 491 – 499 (2016).

    Article  CAS  Google Scholar 

  11. S. Taktak, “A study on the diffusion kinetics of borided Cr-based steel,” J. Mater. Sci., 41, 7590 – 7596 (2006).

    Article  CAS  Google Scholar 

  12. J. H. Yoon, Y. K. Jee, and S. Y. Lee, “Plasma paste boronizing treatment of the stainless steel AISI 304,” Surf. Coat. Technol., 112, 71 – 75 (1999).

    Article  CAS  Google Scholar 

  13. J. Camacho, R. Lewis, and R. S. Dwyer-Joyce, “Solid particle erosion caused by rice grains,” Wear, 267, 223 – 232 (2009).

    Article  CAS  Google Scholar 

  14. K. Yildizli, D. Odabas, and F. Nair, “Borlanmş AISI 1020 çeliğinin erozivaş ınmada vraniş ınınin celenmesi,” Balikesir Üniversitesi Fen bilimleri Enstitüsü Dergisi, 5, 13 – 140 (2003).

    Google Scholar 

  15. E. Avcu, S. Fidan, S. Karabay, and T. Sinmazcelik, “The comparison of solid particle erosion behaviors of AA-1070 and AA-6101 alloys used in power transmission lines in Turkey,” J. Faculty Eng. Architect. Gazi Univ., 27, 865 – 874 (2012).

    Google Scholar 

  16. S. U. Bayca, A Solid Boriding Agent, Patent PCT/TR2018/050643 (Baybora-I) (2018).

  17. S. Taktak, “Some mechanical properties of borided AISI H13 and 304 steels,” Mater. Design, 28, 1836 – 1843 (2007).

    Article  CAS  Google Scholar 

  18. I. Campos-Silva, M. Ortiz-Dominguez, O. Bravo-Barcenas, et al., “Formation and kinetics of FeB/Fe2 B layers and diffusion zone at the surface of AISI 316 borided steels,” Surf. Coat. Technol., 205, 403 – 412 (2010).

    Article  CAS  Google Scholar 

  19. C. H. Xu,W. Gao, and Y. L. Yang, “Superplastic boronizing of a low alloy steel – microstructural aspects,” J. Mater. Proc. Technol., 108, 349 – 355 (2000).

    Article  Google Scholar 

  20. O. Bican and B. Yamanel, “Investigation of structural and tribological properties of layers formed in SAE 5140 steel coated with boride powders,” Mater. Express, 8, 427 – 434 (2018).

    Article  CAS  Google Scholar 

  21. O. Bican, S. U. Bayca, S. Ocak-Araz, et al., “Effects of the boriding process and of quenching and tempering after boriding on the microstructure, hardness and wear of AISI 5140 steel,” Surf. Rev. Lett., 27(6), 1950157 (2020).

  22. G. Sundararajan and M. Roy, “Solid particle erosion behaviour of metallic materials at room and elevated temperatures,” 30, 339 – 359 (1997).

  23. I. M. Hutchings and R. E. Winter, “Particle erosion of ductile metals: a mechanism of material removal,” Wear, 27, 121 – 128 (1974).

    Article  CAS  Google Scholar 

  24. J. Z. Yang, M. H. Fang, Z. H. Huang, et al., “Solid particle impact erosion of alumina-based refractories at elevated temperatures,” J. Eur. Ceram. Soc., 32, 282 – 289 (2012).

    Google Scholar 

  25. N. H. Arani,W. Rabba, and M. Papini, “Solid particle erosion of epoxy matrix composites by Al2O3 spheres,” Tribol. Int., 136, 432 – 445 (2019).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 3, pp. 44 – 50, March, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bican, O., Bayça, S.U., Kuleyin, H. et al. Effect of Boronizing on Operating Stability of Steel AISI 304L under Erosion Impact of Hard Particles. Met Sci Heat Treat 63, 156–162 (2021). https://doi.org/10.1007/s11041-021-00663-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-021-00663-z

Key words

Navigation