Skip to main content
Log in

Effect of Compaction Pressure on Mechanical Properties of Powder Steel 0.06% C – 22% Cr – 13% Ni – 5% Mn – 2% Mo Obtained by Mechanical Alloying Followed by Annealing

  • Published:
Metal Science and Heat Treatment Aims and scope

The mechanical properties of a powder steel containing 0.06% C, 22% Cr, 13% Ni, 5% Mn and 2% Mo (UNS S20910) and manufactured by mechanical alloying with subsequent annealing are studied. The changes in the structure during the mechanical alloying and the annealing are determined by the methods of x-ray diffractometry, optical microscopy and scanning electron microscopy with an attachment for energy dispersive analysis. The modes of compaction and sintering providing optimum mechanical properties in the steel are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. S. J. Zinkle and J. T. Busby, “Structural materials for fission & fusion energy,” Mater. Today, 12(11), 12 – 19 (2009) (https://doi.org/10.1016/S1369-7021(09)70294-9).

    Article  CAS  Google Scholar 

  2. M. O. Speidel, “New nitrogen-bearing austenitic stainless steels with high strength and ductility,” Met. Sci. Heat Treat., 47, 489 (2005) (https://doi.org/10.1007/s11041-006-0017-y).

    Article  CAS  Google Scholar 

  3. https://www.hpalloy.com/Alloys/descriptions/NITRONIC50.aspx (Accessed on June 2019).

  4. Y. Ke and Y. Ren, “Nickel-free austenitic stainless steel for medical applications,” Sci. Technol. Adv. Mater., 11, 1468 – 6996 (2010) (https://doi.org/10.1088/1468-6996/11/1/014105).

    Article  CAS  Google Scholar 

  5. L. Bracke, G. Metrens, J. Penning, et al., “Influence of phase transformations on the mechanical properties of high-strength austenitic Fe – Mn – Cr steel,” Metall. Mater. Trans. A, 37, 307 (2006) (https://doi.org/10.1007/s11661-006-0002-5).

    Article  Google Scholar 

  6. A. Pardo, M. C. Merino, A. E. Coy, et al., “Pitting corrosion behaviour of austenitic stainless steels – combining effects of Mn and Mo additions,” Corros. Sci., 50, 1796 – 1806 (2008) (https://doi.org/10.1016/j.corsci.2008.04.005).

    Article  CAS  Google Scholar 

  7. Z. Karmiol and D. Chidambaram, “Comparison of performance and oxidation of nitronic-50 and stainless steel 316 in subcritical and supercritical water environments,” Metall. Mater. Trans. A, 47, 2498 (2016) (https://doi.org/10.1007/s11661-016-3368-z).

    Article  CAS  Google Scholar 

  8. C. Suryanarayana, “Mechanical alloying and milling,” Prog. Mater. Sci., 46(1 – 2), 1 – 184 (2001) (10.1016/S0079-6425(99)00010-9).

  9. K. Kumar, et al., “Effect of Y2O3 addition and cooling rate on mechanical properties of Fe – 24Cr – 20Ni – 2Mn steels by powder metallurgy route,” Compos. Commun., 10, 116 – 121 (2018) (https://doi.org/10.1016/j.coco.2018.09.003).

    Article  Google Scholar 

  10. C. Garcia-Cabezon, Y. Blanco, M. L. Rodriguez-Mende, and F. Matrin-Pedrosa, “Characterization of porous nickel-free austenitic stainless steel prepared by mechanical alloying,” J. Alloys Compd., 716, 46 – 55 (2017) (https://doi.org/10.1016/j.jallcom.2017.05.045).

    Article  CAS  Google Scholar 

  11. P. K. Kumar, N. V. Sai, and A. G. Krishna, “Influence of sintering conditions on microstructure and mechanical properties of alloy 218 steels by powder metallurgy route,” Arabian J. Sci. Eng., 43, 4659 – 4674 (2018) (https://doi.org/10.1007/s13369-017-3015-z).

    Article  CAS  Google Scholar 

  12. N. Kurgan and R. Varol, “Mechanical properties of P/M 316L stainless steel materials,” Powder Technol., 201, 242 – 247 (2010) (https://doi.org/10.1016/j.powtec.2010.03.041).

    Article  CAS  Google Scholar 

  13. S. Pandya, K. S. Ramakrishna, A. Raja, and A. Upadhyaya, “Effect of sintering temperature on the mechanical and electrochemical properties of austenitic stainless steel,” Mater. Sci. Eng. A, 556, 271 – 277 (2012) (https://doi.org/10.1016/j.msea.2012.06.087).

    Article  CAS  Google Scholar 

  14. S. Chauhan, V. Verma, U. Prakash, et al., “Influence of sintering temperature and cooling rate on microstructure and mechanical properties of pre-alloyed Fe-Cr-Mo powder metallurgy steel,” Trans. Indian Inst. Met., 71, 219 (2018) (https://doi.org/10.1007/s12666-017-1157-z).

    Article  CAS  Google Scholar 

  15. R. Abbaschian and R. E. Reed-Hill, Physical Metallurgy Principles (2009).

    Google Scholar 

  16. G. K. Rane, U. Welzel, and E. J. Mittemeijer, “Grain growth studies on nanocrystalline Ni powder,” Acta Mater., 60, 7011 – 7023 (2012) (https://doi.org/10.1016/j.actamat.2012.08.059).

    Article  CAS  Google Scholar 

  17. M.Wang, H. Sun, H. Zhou, et al., “Structural evolution of oxide dispersion strengthened austenitic powders during mechanical alloying and subsequent consolidation,” Powder Technol., 272, 309 – 315 (2015) (https://doi.org/10.1016/j.powtec.2014.12.008).

    Article  CAS  Google Scholar 

  18. M. H. Enayati and M. R. Bafandeh, “Phase transitions in nanostructured Fe – Cr – Ni alloys prepared by mechanical alloying,” J. Alloys Compd., 454, 228 – 232 (2000) (https://doi.org/10.1016/j.jallcom.2007.03.064).

    Article  CAS  Google Scholar 

  19. K. Mahesh, S. Sankaran, and P. Venugopal, “Microstructural characterization and mechanical properties of powder metallurgy dual phase steel preforms,” J. Mater. Sci. Technol., 28, 108 – 1094 (2012) (https://doi.org/10.1016/S1005-0302(12)60177-7).

    Article  Google Scholar 

  20. H. Chih-Chun and W. Weite, “Overview of intermetallic sigma (σ) phase precipitation in stainless steels,” ISRN Metallurgy (2012) (https://doi.org/10.5402/2012/732471).

  21. T. Sourmail, “Precipitation in creep resistant austenitic stainless steels,” Mater. Sci. Technol., 17, 267 – 836 (2001) (https://doi.org/10.1179/026708301101508972).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 3, pp. 19 – 27, March, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, P.K., Mariappan, R., Sai, N.V. et al. Effect of Compaction Pressure on Mechanical Properties of Powder Steel 0.06% C – 22% Cr – 13% Ni – 5% Mn – 2% Mo Obtained by Mechanical Alloying Followed by Annealing. Met Sci Heat Treat 63, 132–139 (2021). https://doi.org/10.1007/s11041-021-00659-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-021-00659-9

Key words

Navigation