Skip to main content
Log in

Investigation of Surface Layers of Titanium Alloy VT6 with Deposited Carbon Film under Ion-Beam Stirring

  • TITANIUM ALLOYS
  • Published:
Metal Science and Heat Treatment Aims and scope

The surface layer obtained by ion-beam stirring of a thin carbon film deposited on titanium alloy VT6 is studied. The composition and the chemical condition of elements in the surface layer are determined. Formation of a disordered carbon structure in a thin surface layer (20 – 40 nm) and of titanium carbides in the transition layer is detected. A model of formation of structure in the specimens during irradiation is developed. It is shown that formation of a disordered carbon structure, of titanium carbides, and of dislocation substructures is responsible for elevation of the microhardness of the specimens after ion-beam stirring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

References

  1. B. A. Kalin, N. V. Volkov, and I. B. Oleinikov, “Stirring in multilayer films and alloying of near-surface layers of polycrystalline substrates under the impact of ion beams with wide energy spectrum,” Izv. Ross. Akad. Nauk, Ser. Fiz., 76(6), 771 – 776 (2012).

    Google Scholar 

  2. F. F. Komarov, V. M. Konstantinov, A. V. Kovalchuk, et al., “The effect of steel substrate pre-hardening on structural, mechanical, and tribological properties of magnetron sputtered TiN and AlN coatings,” Wear, 352 – 353, 92 – 101 (2016).

  3. I. V. Ivanov, A. Thoemmes, V. Yu. Skiba, et al., “Effect of the power density of electron beam on the structure of titanium under out-of-vacuum electron-beam treatment,” Metalloved. Term. Obrab. Met., No. 10, 10 – 17 (2018).

    Google Scholar 

  4. J. Mackerle, “Coatings and surface modification technologies: a finite element bibliography (1995 – 2005),” Model. Simul. Mater. Sci. Eng., No. 13, 935 – 979 (2005) (doi: https://doi.org/10.1088/0965-0393/13/6/011).

    Article  CAS  Google Scholar 

  5. V. I. Kalita, D. I. Komlev, G. A. Pribytkov, et al., “Structure, phase composition and microhardness of a plasma cermet TiC – Ti coating,” Fiz. Khim. Obrab. Mater., No. 3, 16 – 28 (2018).

    Google Scholar 

  6. A. Rajabi, M. J. Ghazali, and A. R. Daud, “Chemical composition, microstructure and sintering temperature modifications on mechanical properties of TiC-based cermet — A Review,” Mater. Design, 67, 46 – 95 (2915).

  7. R. Hauert and J. Patscheilder, “From alloying to nanocomposites — improved performance of hard coatings,” Adv. Eng. Mater., 2(5), 247 – 259 (2000).

    Article  CAS  Google Scholar 

  8. N. P. D’yakonova, E. V. Shelekhov, T. A. Sviridova, and A. A. Reznikov, “Quantitative x-ray phase analysis of weakly textured objects,” Zavod. Lab., 63(10), 17 – 24 (1997).

    Google Scholar 

  9. G. A. Dorofeev, A. N. Streletskii, I. V. Povstugar, et al., “Determination of the sizes of nanoparticles of x-ray diffractometry,” Kolloid. Zh., 74, 710 – 720 (2012)

    Google Scholar 

  10. URL: http://lammps.sandia.gov/.

  11. C. D. Wagner, W. M. Rigus, and L. E. Davis, Handbook of X-Ray Photoelectron Spectroscopy, Physical Electronics Div., Perkin-Elmer Corp., Eden Prairie (1979).

  12. A. C. Ferrari and J. Robertson, “Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond.,” Phil. Trans. R. Soc. London, A362, 2477 – 2512 (2004).

    Article  Google Scholar 

  13. A. P. Gulyaev, Metal Science [in Russian], Metallurgiya, Moscow (1986), 544 p.

    Google Scholar 

  14. I. A. Kuzina, E. V. Kozlov, and Yu. P. Sharkeev, Gradient Surface Layers Based on Intermetallic Particles [in Russian], Izd. NTL, Tomsk (2013), 260 p.

    Google Scholar 

  15. L. Lindsay and D. A. Broido, “Optimized Tersoff and Brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene,” Phys. Rev. B, 81, 205441 (2010).

    Article  Google Scholar 

  16. URL: https://ovito.org/index.php/.

  17. J. F. Zeigler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids, Pergamon, New York (1985), 321 p.

    Google Scholar 

  18. F. F. Komarov, A. P. Novikov, and A. F. Burenkov, Ion Implantation [in Russian], Izd. “Universitetskoe,” Minsk (1994), 303 p.

  19. V. P. Voloshin and Yu. I. Naberukhin, “On the origin of splitting of second maximum in the radial distribution function of amorphous solids,” Zh. Strukt. Khim., 38(1), 78 – 88 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Sozonova.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 2, pp. 20 – 25, February, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sozonova, N.M., Vorob’ev, V.L., Gil’mutdinov, F.Z. et al. Investigation of Surface Layers of Titanium Alloy VT6 with Deposited Carbon Film under Ion-Beam Stirring. Met Sci Heat Treat 63, 80–85 (2021). https://doi.org/10.1007/s11041-021-00650-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-021-00650-4

Key words

Navigation