Skip to main content
Log in

Elevation of Impact Toughness of Medium-Manganese Trip-Steel 0.2% C – 6% Mn – 3% Al Due to Evolution of Microstructure Under Heat Treatment

  • Published:
Metal Science and Heat Treatment Aims and scope

The possibility of raising the impact toughness of medium-manganese TRIP-steel Fe – 0.2% C – 6% Mn – 3% Al by application of a novel heat treatment involving quenching from the intercritical temperature range and subsequent tempering is investigated. Electron microscope and x-ray diffraction studies are performed after the heat treatment. The quenching mode providing the highest impact toughness is determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  1. S. Lee, S. J. Lee, and B. C. Cooman, “Austenite stability of ultrafine-grained transformation-induced plasticity steel with Mn partitioning,” Scr. Mater., 65, 225 – 228 (2012).

    Article  Google Scholar 

  2. J. Shi, X. J. Sun, M. Q. Wang, W. J. Hui, et al., “Enhanced work-hardening behaviors and mechanical properties in ultrafine-grained steels with large-fractioned metastable austenite,” Scr. Mater., 63, 815 – 818 (2010).

    Article  CAS  Google Scholar 

  3. N. Nakada, K. Mizutani, T. Tsuchiyama, and S. Takaki, “Difference in transformation behavior between ferrite and austenite formations in medium manganese steel,” Acta Mater., 65, 251 – 258 (2014).

    Article  CAS  Google Scholar 

  4. S. Lee, S. J. Lee, S. S. Kumar, et al., “Localized deformation in multiphase ultra-fine-grained 6 Pct Mn transformation-induced plasticity steel,” Metall. Mater. Trans. A, 42A, 3638 – 3651 (2011).

    Article  Google Scholar 

  5. Z. C. Li, R. D. K. Mishra, G. Ding, et al., “The significant impact of pre-strain on the structure-mechanical properties relationship in cold-rolled medium manganese TRIP steel,” Mater. Sci. Eng. A, 712, 206 – 213 (2018).

    Article  CAS  Google Scholar 

  6. R. H. Cao, J. H. Liang, F. Li, et al., “Intercritical annealing processing and a new type of quenching and partitioning processing, actualized by combining intercritical quenching and tempering, for medium manganese lightweight steel,” Steel Res. Int., 91, 1900335, 1 – 7 (2019).

    Google Scholar 

  7. N. Yan, H. S. Di, R. D. K. Mishra, et al., “Enhancing austenite stability in a new medium-Mn steel by combining deep cryogenic treatment and intercritical annealing: An experimental and theoretical study,” Mater. Sci. Eng. A, 753, 11 – 21 (2019).

    Article  CAS  Google Scholar 

  8. T. Tsuchiyama, T. Inoue, J. Tobata, et al., “Microstructure and mechanical properties of a medium manganese steel treated with interrupted quenching and intercritical annealing,” Scr. Mater., 122, 36 – 39 (2016).

    Article  CAS  Google Scholar 

  9. Z. C. Li, X. T. Zhang, Y. J. Mou, et al., “The impact of intercritical annealing in conjunction with warm deformation process on microstructure, mechanical properties and TRIP effect in medium-Mn TRIP steel,” Mater. Sci. Eng. A, 746, 363 – 371 (2019).

    Article  CAS  Google Scholar 

  10. X. Qi, L. X. Du, J. Hu, and R. D. K. Mishra, “Effect of austenite stability on toughness, ductility, and work-hardening of medium- Mn steel,” Mater. Sci. Technol., 35, 2134 – 2142 (2019).

    Article  CAS  Google Scholar 

  11. G. Su, X. Gao, D. Zhang, et al., “Impact of reversed austenite on impact toughness of the high-strength steel of low carbon medium manganese, JOM, 70, 672 – 679 (2018).

  12. S. Yamanaka, T. Iwamoto, and T. Sawa, “Study on capturing transformation thermomechanical behavior of TRIP steel during impact compression,” Mater. Res. Innov., 15, 131 – 134 (2011).

    Article  Google Scholar 

  13. K. M. Zhao, Y. Chang, P. Hu, and Y. C. Wu, “Influence of rapid cooling pretreatment on microstructure and mechanical property of hot stamped AHSS part,” J. Mater. Proc. Tech., 228, 68 – 75 (2016).

    Article  Google Scholar 

  14. X. D. Li, Y. Chang, C. Y. Wang et al, “Comparison of the hot-stamped boron-alloyed steel and the warm-stamped medium- Mn steel on microstructure and mechanical properties,” Mater. Sci. Eng. A, 679, 240 – 248 (2017).

    Article  CAS  Google Scholar 

  15. Z. Q. Wu, Y. B. Tang, W. Chen, et al., “Exploring the influence of Al content on the hot deformation behavior of Fe – Mn – Al – C steels through 3D processing map,” Vacuum, 159, 447 – 455 (2019).

    Article  CAS  Google Scholar 

  16. Z. Y. Liang, Y. Z. Li, and M. X. Huang, “The respective hardening contributions of dislocations and twins to the flow stress of a twinning-induced plasticity steel,” Scr. Mater., 112, 28 – 31 (2016).

    Article  CAS  Google Scholar 

  17. J. Han, J. H. Nam, and Y. K. Lee, “The mechanism of hydrogen embrittlement in intercritically annealed medium Mn TRIP steel,” Acta Mater., 113, 1 – 10 (2016).

    Article  CAS  Google Scholar 

  18. H. Kamoutsi, E. Gioti, Gregory N. Haidemenopoulos, et al., “Kinetics of solute partitioning during intercritical annealing of medium-Mn steel,” Mater. Trans. A, 46A, 4841 – 4846 (2015).

  19. A. K. Srivastava, D. Bhattacharjee, G. Jha, et al., “Microstructural and mechanical characterization of C – Mn – Al – Si cold-rolled TRIP-aided steel,” Mater. Sci. Eng. A, 445 – 446, 549 – 557 (2007).

  20. N. H. V. Dijk, A. M. Butt, L. Zhao, et al., “Thermal stability of retained austenite in TRIP steels studied by synchrotron x-ray diffraction during cooling,” Acta Mater., 53, 5439 – 5447 (2005).

    Article  Google Scholar 

  21. R. D. K. Mishra, V. S. A. Challa, P. K. C. Venkatsurya, et al., “Interplay between grain structure, deformation mechanisms and austenite stability in phase-reversion-induced nanograined/ultrafine-grained austenitic ferrous alloy,” Acta Mater., 84, 339 – 348 (2015).

    Article  Google Scholar 

  22. Z. C. Li, X. T. Zhang, Y. J. Mou, et al., “Design of an effective heat treatment involving intercritical hardening for high strength-high elongation of 0.2C – 1.5Al – (6 – 8.5)Mn – Fe TRIP steels: microstructural evolution and deformation behavior,” Mater. Sci. Tech., 36 500 – 510 (2020).

    Article  CAS  Google Scholar 

  23. X. C.Wei, R. Y. Fu, and L. Li, “Tensile deformation behavior of cold-rolled TRIP-aided steels over large range of strain rates,” Mater. Sci. Eng. A, 465, 260 – 266 (2007).

    Article  Google Scholar 

  24. R. Tian, L. Li, B. C. De Cooman, X. C.Wei, and P. Sun, “Effect of temperature and strain rate on dynamic properties of low silicon TRIP steel,” J. Iron Steel Res. Int., 13, 51 – 56 (2006).

    Article  CAS  Google Scholar 

  25. M. T. Kim, T. M. Park, K.-Ho. Baik, et al., “Crucial microstructural feature to determine the impact toughness of intercritically annealed medium-Mn steel with triplex-phase microstructure,” Acta Mater., 164, 122 – 134 (2019).

  26. J. Han, A. K. Silva, D. Ponge, et al., “The effects of prior austenite grain boundaries and microstructural morphology on the impact toughness of intercritically annealed medium Mn steel,” Acta Mater., 122, 199 – 206 (2017).

    Article  CAS  Google Scholar 

  27. M. Kuzmina, D. Ponge, and D. Raabe, “Grain boundary segregation engineering and austenite reversion turn embrittlement into toughness: Example of a 9 wt.% medium Mn steel,” Acta Mater., 86, 182 – 192 (2015).

    Article  CAS  Google Scholar 

  28. G. Lacroix, T. Pardoen, and P. J. Jacques, “The fracture toughness of TRIP-assisted multiphase steel,” Acta Mater., 56, 3900 – 3913 (2008).

    Article  CAS  Google Scholar 

  29. T. Neeraj, R. Srinivasan, and J. Li, “Hydrogen embrittlement of ferritic steels: Observations on deformation microstructure, nanoscale dimples and failure by nanovoiding,” Acta Mater., 60, 5160 – 5171 (2012).

    Article  CAS  Google Scholar 

  30. Y. J. Mou, Z. C. Li, X. T. Zhang, et al., “Design of an effective heat treatment involving intercritical hardening for high strength-high elongation of 0.2C – 3Al – (6 – 8.5)Mn – Fe TRIP steels: microstructural evolution and deformation behavior,” Metals, 9, 1275 – 1284 (2019).

    Article  CAS  Google Scholar 

  31. A. Das and S. Tarafder, “Geometry of dimples and its correlation with mechanical properties in austenitic stainless steel,” Scr. Mater., 59, 1014 – 1017 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 1, pp. 27 – 34, January, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mou, Y., Li, X., Li, Z. et al. Elevation of Impact Toughness of Medium-Manganese Trip-Steel 0.2% C – 6% Mn – 3% Al Due to Evolution of Microstructure Under Heat Treatment. Met Sci Heat Treat 63, 26–33 (2021). https://doi.org/10.1007/s11041-021-00642-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-021-00642-4

Key words

Navigation