Skip to main content
Log in

Hydrogenation of Deeply Cooled Melts as an Effective Method for Amorphization and Control of the Structure of Alloys Based on d-Metals

  • MELTS
  • Published:
Metal Science and Heat Treatment Aims and scope

Processes of amorphization and crystallization of binary and multicomponent melts based on transition metals are studied. Comparative analysis of the pre-crystallization structural changes and of the atomic dynamics under the conditions of forced quenching and deep supercooling of metallic melts is performed. It is shown that hydrogenation of the melts introduces specific features into the occurrence of the pre-recrystallization processes by affecting the atomic configuration, the modulation of the frequency spectrum and the fluctuation of the energy-band (electron) structure determining the vitrification and the coherent nanocrystallization with combination of crystal clusters and clusters with noncrystallographic symmetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. C. Suryanarayana and A. Inoue, Bulk Metallic Grasses. Technology and Engineering, CRC Press, Taylor & Francis (2017), 520 p.

    Google Scholar 

  2. Y. Q. Cheng and E. Ma, “Atomic-level structure and structure- property relationship in metallic glasses,” Progr. Mater. Sci., 56, 379 – 473 (2011).

    Article  CAS  Google Scholar 

  3. Y. Zhang, T. T. Zuo, Y. Q. Cheng, and P. K. Liaw, “High-entropy alloys with high saturation magnetization, electrical resistivity, and malleability,” Sci. Rep., 3, 1455(1 – 7) (2013).

  4. A. Takeuchi, C. Michael, M. Gao, J. Qiao, and M. Widom, High-Entropy Metallic Glasses in High-Entropy Alloys, Springer Int. Publishing, Switzerland (2016), pp. 445 – 468.

    Book  Google Scholar 

  5. V. A. Polukhin and N. A. Vatolin, “Stability and thermal evolution of transition metal and silicon clusters,” Russ. Chem. Rev., 84(5), 498 – 539 (2015).

    Article  CAS  Google Scholar 

  6. T. Iwashita, D. M. Nicholson, and T. Egami, “Elementary excitations and crossover phenomenon in liquids,” Phys. Rev. Lett., 20, 205504(1 – 5) (2013).

  7. N. Jakse and A. Pasturel, “Liquid-liquid phase transformation in silicon: evidence from first-principles molecular dynamics simulations,” Phys. Rev. Lett., 99, 205702 (2007).

    Article  CAS  Google Scholar 

  8. G. A. Mansuri, Principles of Nanotechnology. Study of Condensed Matter in Small Systems,World Scientific (2005), 360 p.

    Book  Google Scholar 

  9. S. Guo, C. Ng, J. Lu, and C. T. Liu, “Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys,” J. Appl. Phys., 109(10), 103505(1 – 5) (2011).

  10. V. S. Kraposhin and A. L. Talis, “Symmetry foundations of a polymer model for closepacked metallic liquids and glasses,” Russ. Metall. (Metally), No. 2, 101 – 108 (2016).

    Article  Google Scholar 

  11. V. S. Kraposhin, A. L. Talis, and J. M. Dubois, “Structural realization of the polytope approach for the geometrical description of the transition of a quasicrystal into a crystalline phase,” J. Phys. Condens. Matter, 14(13), 8987 – 8996 (2002).

    Article  CAS  Google Scholar 

  12. V. A. Polukhin, N. A. Vatolin, and E. D. Kurbanova, “The formation of intermediate order in metglasses and long order in nanocrystalline alloys in depending of the bond types and specificity of short order changing of melt structure,” Russ. Metall. (Metally), No. 2, 121 – 135 (2018).

    Google Scholar 

  13. V. A. Polukhin and N. A. Vatolin, Modelling of Disordered and Nanostructured Phases [in Russian], Izd. UrO RAN, Ekaterinburg (2011), 363 p.

  14. V. A. Polukhin and N. A. Vatolin, “Thermal stability and deformation mechanisms in graphene- or silicene-reinforced layered and matrix metallic composites,” Russ. Metall. (Metally), No. 8, 685 – 699 (2018).

    Article  Google Scholar 

  15. A. N. Mansour, “Amorphous Al90FexCe10–x alloys: x-ray absorption analysis of the Al, Fe and Ce local atomic and electronic structures,” Phys. Rev. B, 65(13), 134,207 – 134,235 (2002).

    Article  Google Scholar 

  16. W. Kim, H. S. Oh, and E. S. Park, “Manipulation of the thermal and mechanical stability by addition of multiple equiatomic rare-earth elements in Al – Tm – Re metallic glasses,” Intermetallics, 91, 8 – 15 (2017).

    Article  CAS  Google Scholar 

  17. A. L. Talis and V. S. Kraposhin, “Finite noncrystallographic groups, 11-vertex equi-edged triangulated clusters and polymorphic transformations in metals,” Acta Cryst., A70, 616 – 625 (2014).

    Google Scholar 

  18. V. A. Polukhin, N. I. Sidorov, and N. A. Vatolin, “Pre-crystallization changes of structural-dynamic characteristics of amorphized metallic melts under deep cooling, vitrification and hydrogenation,” Rasplavy, No. 5, 495 – 534 (2018).

    Article  Google Scholar 

  19. V. A. Polukhin and M. M. Dzugutov, “Statistical geometry of structure analysis of molecular dynamical model of amorphous and liquid aluminum,” Met. Metallogr., 51(1), 50 – 55 (1981).

    Google Scholar 

  20. S. Wei, F. Yang, J. Bednartcik, I. Kaban, O. Shuleshova, et al., “Liquid – liquid transition in a strong bulk metallic glass-forming liquid,” Nature Commun., No. 4, 2083(1 – 5) (2013).

  21. R. Soklaski, V. Tran, Z. Nussinov e al., “A locally preferred structure characterizes all dynamical regimes of a supercooled liquid,” Philos. Mag., 96(12), 1212 – 1227 (2016).

    Article  CAS  Google Scholar 

  22. K. F. Kelton, “Kinetic and structural fragility – a correlation between structures and dynamics in metallic liquids and glasses,” J. Phys., Condens. Matter, 29, 023002(1 – 41) (2017).

  23. J. P. K. Doye, D. J.Wales, F. H. M. Zetterling, and M. Dzugutov, “The favored cluster structures of model glass former,” J. Chem. Phys., 118, 27792 – 2799 (2003).

    Google Scholar 

  24. V. A. Polukhin, E. A. Pastukhov, and N. I. Sidorov, “Structure of alloys Pd1–xSixFe1–xPx in liquid and amorphous states,” Phys. Met. Metallogr., 57(3), 176 – 179 (1984).

    Google Scholar 

  25. T. Schenk, D. Holland-Moritz, V. Simonet, R. Bellissent, et al., “Icosahedral short-range order in deeply under-cooled metallic melts,” Phys. Rev. Lett., 89, 075507(1 – 4) (2002).

  26. D. Turnbull, “Under what conditions can a glass be formed,” Contemp. Phys., 10(5), 473 – 481 (1969).

    Article  CAS  Google Scholar 

  27. H. R. Vendt and F. F. Abraham, “Empirical criterion for the glass transition region based on Monte Carlo simulations,” Phys. Rev. Lett., 41, 1244 – 1248 (1978).

    Article  Google Scholar 

  28. M. Samoylovich and A. Talis, “Symmetry of helicoidal biopolymers in the frameworks of algebraic geometry: α-helix and DNA structures,” Acta Cryst., A70, 186 – 198 (2014).

    Google Scholar 

  29. S. Yu. Kondrat’ev, V. S. Kraposhin, G. P. Anastasiadi, and A. L. Talis, “Experimental observation and crystallographic description of M7C3 carbide transformation in Fe – Cr – Ni – C HP type alloy,” Acta Mater., 100, 275 – 281 (2015).

    Article  Google Scholar 

  30. R. M. Belyakova, V. A. Polukhin, and E. D. Kurbanova, “Effect of admixtures of surface-active elements in Fe – C – Si alloys under rapid solidification of melt on the quality of structural,” Met. Sci. Heat Treat., 58(3 – 4), 187 – 191 (2016).

  31. S. Jayalakshmi, Y. G. Choi, Y. C. Kim, et al., “Hydrogenation properties of Ni – Nb – Zr – Ta amorphous ribbons,” Intermetallics, 18(10), 1988 – 1993 (2010).

    Article  CAS  Google Scholar 

  32. N. A. Vatolin, V. A. Polukhin, R. M. Belyakova, and E. A. Pastukhov,” “Simulation of the influence of hydrogen on the structural properties of amorphous iron,” Mater. Sci. Eng., 99(2), 551 – 554 (1988).

    Article  CAS  Google Scholar 

  33. N. F. Al-Mufachi, N. V. Rees, and R. Steinberger-Wilkenes, “Hydrogen selective membranes: A review of palladium-based dense metal membranes,” Renew. Sustain. Energy Rev., 47, 540 – 551 (2015).

    Article  CAS  Google Scholar 

  34. S. Hao and D. S. Sholl, “Comparison of first principles calculations and experiments for hydrogen permeation through amorphous ZrNi and ZrNiNb films,” J. Membrane Sci., 350(1 – 2), 402 – 409 (2010).

  35. B.-M. Lee and B.-J. Lee, “A comparative study on hydrogen diffusion in amorphous and crystalline metals using a molecular dynamics simulation,” Metall. Mater. Trans. A, 45(6), 2915 – 2916 (2014).

    Article  Google Scholar 

  36. M. D. Dolan, G. Song, D. Liang, et al., “Hydrogen transport through C85Ni10M5 alloy membranes,” J. Membrane Sci., 373(1 – 2), 14 – 19 (2011).

  37. V. A. Polukhin, N. I. Sidorov, E. A. Evard, et al., “Computational and experimental investigation of hydrogen interaction with amorphous metals,” Russ. Metall. (Metally), 2001(2), 131 – 135 (2001).

    Article  Google Scholar 

  38. V. A. Polukhin, R. M. Belyakova, and L. K. Rigmant, “Spatial arrangement of the fragmented phases in nanostructured 3d metal alloys during a change in the melt composition and cooling conditions,” Russ. Metall. (Metally), 2010(8), 681 – 698 (2010).

    Article  Google Scholar 

  39. Y. H. Shen, A. K. Gangopadhy, and K. F. Kelton, “Icosahedral order, frustration, and the glass transition: Evidence from time-dependent nucleation and supercooled liquid structure studies,” Phys. Rev. Lett., 102, 057801(1 – 5) (2009).

  40. V. A. Polukhin, M. M. Dzugutov, M. M. Evseev, et al., “Short-range order and character of atom motion in liquid-metals,” Dokl. Akad, Nauk SSSR, 223(3), 650 – 652 (1975).

    CAS  Google Scholar 

  41. Y. V. Zaika, N. I. Sidorov, and N. I. Rodchenkova, “Aggregation of experiments for estimation of hydrogen permeability parameters,” Int. J. Hydrogen Energy, 43(17), 8333 – 8341 (2018).

    Article  CAS  Google Scholar 

  42. R. Wyse, “Investigation of Zr-based amorphous alloy membranes for hydrogen purification,” in: M. Res. Thesis, Publ. by University of Birmingham, 99 p.

  43. V. A. Bykov, D. A. Yagodin, S. Kh. Estemirova, T. V. Kulikova, and K. Y. Shunyaev, “Effect of titanium additions on the thermophysical properties of glass-forming Cu50Zr50,” Phys. Met. Metallogr., 119(6), 523 – 529 (2018).

    Article  CAS  Google Scholar 

  44. A. Kocjan, S. Kovacic, and A. Gradisek, “Selective hydrogenation of Ti – Zr – Ni alloys,” Int. J. Hydrogen Energy, 36(10), 3056 – 3061 (2011).

    Article  CAS  Google Scholar 

  45. T. Egami, “Atomic level stresses,” Progr. Mater. Sci., 56, 637 – 653 (2011).

    Article  CAS  Google Scholar 

  46. V. A. Polukhin, N. S. Mitrofanova, and E. D. Kurbanova, “Stability, atomic dynamics, and thermal destruction of the d metal/graphene interface structure,” Russ. Metall. (Metally), 2017(2), 116 – 126 (2017).

    Article  Google Scholar 

  47. I. V. Lyasotskyi, N. V. Dyakonova, D. L. Dyakonov, and V. S. Kraposhin, “Quasiperiodic and Frank–Kasper phases formation during primary crystallization of Fe-based amorphous alloys,” J. Phys. Conf. Ser., 98(1), 012026(1 – 5) (2008).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Polukhin.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 1, pp. 3 – 11, January, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polukhin, V.A., Kurbanova, E.D. & Belyakova, R.M. Hydrogenation of Deeply Cooled Melts as an Effective Method for Amorphization and Control of the Structure of Alloys Based on d-Metals. Met Sci Heat Treat 63, 3–10 (2021). https://doi.org/10.1007/s11041-021-00639-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-021-00639-z

Key words

Navigation