Skip to main content
Log in

A Study of Changes in Fatigue Resistance Parameters of Steel 30KhGSN2A in the Process of Cyclic Deformation Hardening

  • DEFORMATION AND FRACTURE
  • Published:
Metal Science and Heat Treatment Aims and scope

Structural changes occurring in the surface layer as a result of the hardening produced by various variants cyclic loading in high-strength high-quality steel 30KhGSN2A are considered. The sizes of the hardened zone are determined. It is shown that the hardening occurs in the early loading stages and is then followed by a durable state of saturation until failure. The differences in the deformation behavior of the samples and the changes in the parameters of fatigue resistance are analyzed. The influence of the conditions of cyclic loading and of the modes of preliminary heat treatment of the steel on the parameters of fatigue resistance is studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

References

  1. G. Gottstein, Physicochemical Fundamentals of the Science of Materials [Russian translation], BINOM, Moscow (2011), 400 p.

    Google Scholar 

  2. A. J. McEvily, Metal Failures: Mechanisms, Analysis, Prevention [Russian translation], Tekhnosfera, Moscow (2010), 416 p.

    Google Scholar 

  3. S. Kocanda, Fatigue Fracture of Metals [Russian translation], Metallurgiya, Moscow (1990), 432 p.

    Google Scholar 

  4. R. Honeycomb, Plastic Deformation of Metals [Russian translation], Mir, Moscow (1972), 408 p.

    Google Scholar 

  5. D. McLean, Mechanical Properties of Metals [Russian translation], Metallurgiya, Moscow (1965), 432 p.

    Google Scholar 

  6. V. E. Panin (ed.), Physical Mesomechanics and Computer Design of Materials [in Russian], Nauka, Novosibirsk (1995).

    Google Scholar 

  7. V. E. Panin, “Surface layers of loaded solids as a mesoscopic structural level of deformation,” Fiz. Mezomekh., 4(3), 5 – 22 (2001).

    CAS  Google Scholar 

  8. V. V. Mylnikov, D. I. Shetulov, and E. A. Chernyshov, “Variation in factors of fatigue resistance for some pure metals as a function of the frequency of loading cycles,” Russ. J. Non-Ferr. Met., 51(3), 237 – 242 (2010).

    Article  Google Scholar 

  9. V. V. Mylnikov, D. I. Shetulov, and E. A. Chernyshov, “Investigation into the surface damage of pure metals allowing for the cyclic loading frequency,” Russ. J. Non-Ferr. Met., 54(3), 229 – 233 (2013).

    Article  Google Scholar 

  10. V. F. Terent’ev, “Periodicity and stages of fracture of metallic materials under fatigue,” Deform. Razrush. Mater., No. 10, 02 – 07 (2013).

    Google Scholar 

  11. S. Suresh, Fatigue of Metals, Cambridge University Press (2006), 701 p.

    Google Scholar 

  12. V. S. Ivanova and A. A. Shanyavskii, Quantitative Fractography. Fatigue Fracture [in Russian], Metallurgiya, Moscow (1988), 399 p.

    Google Scholar 

  13. Yu. N. Rebyakov and O. F. Chernyavskii, “Deformation properties of materials under combination of alternating flow and variation of shape,” Vest. Yuzh. Ural. Gos. Univ., Ser. Matem. Mekh. Fiz., No. 11(270), 47 – 51 (2012).

    Google Scholar 

  14. M. M. Gadenin, “Effect of the form of loading cycle on resistance of structural materials to cyclic deformation and fracture,” Vest. Nauch.-Tekh. Razv., No. 9(37), 15 – 19 (2010).

    Google Scholar 

  15. V. S. Ivanova and V. F. Terent’ev, Nature of Fatigue of Metals [in Russian], Metallurgiya, Moscow (1975), 456 p.

    Google Scholar 

  16. A. A. Shanyavskii, “Scale levels of fatigue processes of metals,” Fiz. Mezomekh., 17(6), 87 – 98 (2014).

    Google Scholar 

  17. V. N. Chuvildeev, O. E. Pirozhnikova, A. V. Nokhrin, and M. M. Myshlyaev, “Strain hardening under the conditions of superplasticity,” Fiz. Tverd. Tela, 49(4), 650 – 656 (2007).

    Google Scholar 

  18. G. V. Pachurin, A. N. Gushchin, K. G. Pachurin, and G. V. Pimenov, Technology of Complex Investigation of Fracture of Deformed Metals and Alloys under Various Loading Conditions [in Russian], Nizhny Novgorod (2005), 141 p.

  19. H. Mughrabi and H. J. Christ, “Cyclic deformation and fatigue of selected ferritic and austenitic steels: specific aspects,” ISIJ Int., 37(12), 1154 – 1169 (1997).

    Article  CAS  Google Scholar 

  20. V. F. Terent’ev, “Cyclic strength of submicro- and nanocrystalline metals and alloys (a review),” Nov. Mater. Tekhnol. Metall. Mashin., No. 1, 8 – 24 (2010).

    Google Scholar 

  21. V. F. Terent’ev and A. A. Oksogoev, Cyclic Strength of Metallic Materials [in Russian], Izd. NGTU, Novosibirsk (2001), 61 p.

    Google Scholar 

  22. A. Cottrell, Dislocations and Plastic Flow in Metals [Russian translation], Metallurgizdat, Moscow (1958), 267 p.

    Google Scholar 

  23. A. N. Orlov, “Dependence of dislocation density on intensity of plastic strain and grain size,” Fiz. Met. Metalloved., 44(5), 966 – 970 (1977).

    CAS  Google Scholar 

  24. S. S. Manson, Behavior of Materials under Conditions of Thermal Stress, NACA TN-2933 (1953).

    Google Scholar 

  25. L. F. Coffin Jr., “A study of the effects of cyclic thermal stresses on a ductile metal,” Trans. ASME, 76, 931 – 950 (1954).

    CAS  Google Scholar 

  26. Yu. G. Korotkikh, I. A. Volkov, I. S. Tarasov, and A. N. Borodoy, “Numerical study of processes of complex plastic deformation of structural steels over closed trajectories on nonproportional deformation under low-cycle loading,” Prob. Proch. Plast., 71, 26 – 35 (2009).

    Google Scholar 

  27. E. O. Hall, “Deformation and ageing of mild steel,” Proc. Phys. B, 64(1), 747 – 753 (1051).

  28. N. J. Petch, “The cleavage strength of polycrystals,” J. Iron Steel Inst., 174, 25 (1953).

    CAS  Google Scholar 

  29. V. V. Mylnikov, D. I. Shetulov, A. I. Pronin, and E. A. Chernyshov, “Prediction of strength and endurance of materials of machine parts and structures with allowance for the frequency of cyclic loading,” Izv. Vysh. Uchebn. Zaved., Chern. Metall., No. 9, 32 – 37 (2012).

    Google Scholar 

  30. V. V. Mylnikov, D. I. Shetulov, and E. A. Chernyshov, “On evaluation of durability criteria in carbon steels,” Met. Technol., No. 2, 19 – 22 (2010).

    Google Scholar 

  31. D. I. Shetulov and V. V. Myl’nikov, “Fatigue-induced damage of high-strength steels,” Russian Metall. (Metally), 2014(3), 341 – 245 (2014).

    Article  Google Scholar 

  32. V. E. Panin, T. F. Elsukova, and G. V. Angelova, “Wane nature of propagation of fatigue cracks on the surface of polycrystal aluminum under cyclic loading,” Fiz. Mezomekh., 5(3), 93 – 99 (2002).

    CAS  Google Scholar 

  33. V. V. Rybin, High Plastic Deformations and Fracture [in Russian], Metallurgiya, Moscow (1986), 224 p.

    Google Scholar 

  34. Yu. I. Koltsun, B. E. Melnikov, T. A. Khibnik, and A. A. Prokhorov, “Effect of frequency and load on wave deformation processes under multicycle fatigue,” Vest. Samarsk. Aerokosm. Univ., No. 3(19), 274 – 282 (2009).

    Google Scholar 

  35. S. V. Panin, I. V. Vlasov, V. P. Sergeev, et al., “Effect of vacuum arc ion-beam treatment on fatigue endurance of steel 30KhGSN2A,” Fiz. Mezomekh., 18(2), 95 – 111 (2015).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Myl’nikov.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 10, pp. 52 – 60, October, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Myl’nikov, V.V., Shetulov, D.I. & Pronin, A.I. A Study of Changes in Fatigue Resistance Parameters of Steel 30KhGSN2A in the Process of Cyclic Deformation Hardening. Met Sci Heat Treat 62, 648–655 (2021). https://doi.org/10.1007/s11041-021-00617-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-021-00617-5

Key words

Navigation