Skip to main content
Log in

Effect of Thermocycling and Mechanical Loads on Corrosion Resistance of High-Strength Nitrogen Austenitic Steels

  • CORROSION RESISTANCE
  • Published:
Metal Science and Heat Treatment Aims and scope

The effect of long-term thermocycling and mechanical loads on the corrosion resistance of novel nitrogen austenitic Cr – Ni – Mn steels melted under laboratory conditions is studied in various aggressive environments. The steels are subjected to 400 thermal cycles in the temperature range from –100 to 100°C and to cyclic mechanical loading during 1 × 106 cycles. The structure and the mechanical properties of the steels after the cyclic loading are studied. Tests for resistance to general and pitting corrosion in sea water (3% NaCl) and in an acid environment (0.5M H2SO4 including blasting with hydrogen sulfide), to pitting corrosion in an aqueous solution of iron chloride, to intercrystalline corrosion in a test solution, to corrosion cracking under load, and for cavitation damage in a 3% solution of NaCl are conducted. It is shown that the developed high-strength nitrogen austenitic steels 10Kh19G10N6AM2 and 09Kh19G10N6AM2D2 both in the initial condition and after the thermocycling and cyclic mechanical loading have high resistance to the types of corrosion studied, which exceeds the resistance of steels 04Kh18N9 and 04Kh18AN9. Requirements on the composition and the structure of the steels are developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. Yu. P. Solntsev, Cold-Resistant Steels and Alloys [in Russian], Khimizdat, St. Petersburg (2005), 480 p.

    Google Scholar 

  2. E. A. Ul’yanin and N. A. Sorokina, Steels and Alloys for Cryogenic Engineering [in Russian], Metallurgiya, Moscow (1984), 209 p.

    Google Scholar 

  3. H.-S. Noh, J.-H. Kang, K.-M. Kim, and S.-J. Kim, “Differential effects of Ni and Mn on thermodynamic and mechanical stabilities in Cr – Ni – Mn austenitic steels,” Metall. Mater. Trans. A: Phys. Met. Mater. Sci., 50(2), 616 – 624 (2019).

    Article  CAS  Google Scholar 

  4. M. O. Shpaidel, “Novel nitrogen-bearing austenitic stainless steels with high strength and ductility,” Metal Sci. Heat Treat., 47(11 – 12), 489 – 493 (2005).

    Article  Google Scholar 

  5. I. V. Gorynin, V. A. Malyshevskii, G. Yu. Kalinin, et al., “Corrosion-resistant high-strength nitrogen steels,” Vopr. Materialoved., No. 3(59), 7 – 16 (2009).

    Google Scholar 

  6. V. V. Naumenko, A. P. Shlyamnev, and G. A. Filippov, “Nitrogen in austenitic stainless steels of various alloying systems,” Metallurg, No. 6, 46 – 53 (2011).

    Google Scholar 

  7. I. P. Shabalov, A. P. Shlyamnev, and L. E. Shchukina, “Structure, mechanical properties and corrosion resistance of stainless steels with nitrogen,” Prob. Chern. Metall. Materialoved., No. 1, 41 – 47 (2016).

    Google Scholar 

  8. M. V. Kostina, S. O. Muradyan, E. V. Blinov, et al., “Austenitic high-strength nitrogen-containing castable steel: structure, casting, mechanical and operating properties, weldability,” in: 80th Anniversary of the Baikov Institute of Metallurgy and Materials Science [in Russian], Interkontakt Nauka, Moscow (2018), pp. 570 – 593.

    Google Scholar 

  9. H. Berns, V. Gavriljuk, and S. Riedner, High Interstitial Stainless Austenitic Steels, Springer, Berlin (2013), 169 p.

    Book  Google Scholar 

  10. V. G. Gavrilyuk, “Carbon, nitrogen and hydrogen in steels: ductility and brittleness,” Izv. Vysh. Uchebn. Zaved., Chern. Metall., 58(10), 761 – 768 (2015).

    Article  Google Scholar 

  11. L. Mujica, S.Weber, andW. Theisen, “The stacking fault energy and its dependence on the interstitial content in various austenitic steels,” Mater. Sci. Forum, 706 – 709, 2193 – 2198 (2012).

  12. K.-S. Kim, J.-H. Kang, and S.-J. Kim, “Effects of carbon and nitrogen on precipitation and tensile behavior in 15Cr – 15Mn – 4Ni austenitic stainless steels,” Mater. Sci. Eng. A, 712, 114 – 121 (2018).

    Article  CAS  Google Scholar 

  13. J. W. Simmons, “Overview: High-nitrogen alloying of stainless steels,” Mater. Sci. Eng. A, 207(2), 159 – 169 (1996).

    Article  Google Scholar 

  14. H. Baba, T. Kodama, and Y. Katada, “Role of nitrogen in the corrosion behavior of austenitic stainless steels,” Corros. Sci., 44, 2393 – 2407 (2002).

    Article  CAS  Google Scholar 

  15. S. Yu. Mushnikova, Yu. L. Legostaev, A. A. Khar’kov, et al., “A study of the effect of nitrogen on pitting corrosion resistance of austenitic steels,” Vopr. Materialoved., No. 2(38), 126 – 135 (2004).

    Google Scholar 

  16. A. Paoonguzhali, M. G. Pujar, and U. K. Mudali, “Effect of nitrogen and sensitization on the microstructure and pitting corrosion behavior of AISI type 316LN stainless steel,” J. Mater. Eng. Perform., 22(4), 11701178 (2013).

    Google Scholar 

  17. W. A. Ghanem,W. A. Hussein, S. N. Saeed, et al., “Effect of nitrogen on the corrosion behavior of austenitic stainless steel in chloride solution,” Modern Appl. Sci., 9(11), 119 – 134 (2015).

    Article  CAS  Google Scholar 

  18. C. Loable, I. N. Vicosa, T. J. Mesquita, et al., “Synergy between molybdenum and nitrogen on the pitting corrosion and passive film resistance of austenitic stainless steels as a pH-dependent effect,” Mater. Chem. Phys., 186, 237 – 245 (2017).

    Article  CAS  Google Scholar 

  19. O. V. Fomina and M. V. Kostina, “Investigation of the effect of temperature and deformation parameters under HTMT on formation of excess phases in high-strength austenitic nitrogen-containing steel,” Vopr. Materialoved., No. 2(90), 17 – 28 (2017).

    Google Scholar 

  20. F. Tuchscheerer and L. Krüger, “Influence of cold deformation and phase transformation on the electrochemical corrosion behavior on nitrogen alloyed stainless steel in chloride solution,” Steel Res. Int., 88(9) (2017).

  21. L. M. Kaputkina, A. G. Svyazhin, I. V. Smarygina, and V. E. Kindop, “Influence of nitrogen and copper on hardening of austenitic chromium-nickel-manganese stainless steel,” CIS Iron Steel Rev., 11, 30 – 34 (2016).

    Article  Google Scholar 

  22. I. M. Kaputkina, I. V. Smarygina, A. G. Svyazhin, et al., “Stability of structure and properties of nitrogen high-strength austenitic steels under cyclic thermal and mechanical loads,” Metal. Sci. Heat Treat., 61(1 – 2), 3 – 9 (2019).

    Article  CAS  Google Scholar 

  23. L. M. Kaputkina, A. G. Svyazhin, I. V. Smarygina, and T. V. Bobkov, “Corrosion resistance of high-strength austenitic chromium–nickel–manganese steel containing nitrogen,” Steel in Trans., 46(9), 644 – 650 (2016).

    Article  Google Scholar 

  24. E. V. Blinov, V. F. Terent’ev, and D. V. Proskurin, “Mechanical properties of a nitrogen-bearing austenitic steel during static and cycle deformation,” Russian Metallurgy (Metally), 2016(9), 798 – 802 (2016).

    Article  Google Scholar 

  25. A. S. Zubchenko (ed.), List of Grades of Steels and Alloys [in Russian], Mashinostroenie, Moscow (2003), 784 p.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. M. Kaputkina.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 10, pp. 34 – 44, October, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaputkina, L.M., Smarygina, I.V., Svyazhin, A.G. et al. Effect of Thermocycling and Mechanical Loads on Corrosion Resistance of High-Strength Nitrogen Austenitic Steels. Met Sci Heat Treat 62, 630–639 (2021). https://doi.org/10.1007/s11041-021-00615-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-021-00615-7

Key words

Navigation