Skip to main content
Log in

Microstructure and Tribological Properties of Tool Steel AISI O2 After Thorough Cryogenic Heat Treatment

  • WEAR RESISTANCE
  • Published:
Metal Science and Heat Treatment Aims and scope

Steel AISI O2 (type 9G2) for a cold-working tool after different quenching, tempering, and cryogenic treatment regimes is studied. It is established that after cryogenic treatment the amount of residual austenite decreases by a factor of 4.3 compared with a quenched condition. The highest hardness 69 HRC is achieved after quenching and cryogenic treatment, and in this case wear resistance is higher by a factor of 2.36 than after quenching and tempering. After cryogenic treatment there is also a reduction in friction coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. E. A. Smol’nikov and G. A. Kossovich, “Cold treatment of cutting tools,” Metal Sci. Heat Treat., 22(10), 704 – 705 (1980).

    Article  Google Scholar 

  2. T. Sonar, S. Lomte, C. Gogte, et al., “Minimization of distortion in heat treated AISI D2 tool steel: Mechanism and distortion analysis,” Proc. Manuf., 20, 113 – 118 (2018).

    Google Scholar 

  3. K.-E. Thelning, Steel and Its Heat Treatment (2000).

  4. J. Yong, C. Ding, and J. Qiong, “Effect of cryogenic thermocycling treatment on the structure and properties of magnesium alloy AZ91,” Metal Sci. Heat Treat., 53(11 – 12), 589 – 591 (2012).

  5. M. Araghchi, H. Mansouri, and R. Vafaei, “Influence of cryogenic thermal treatment on mechanical properties of an Al – Cu – Mg alloy,” Mater. Sci. Technol., 34(4), 468 – 472 (2017).

    Article  Google Scholar 

  6. A. Akhbarizadeh and S. Javadpour, “Investigating the effect of as-quenched vacancies in the final microstructure of 1.2080 tool steel during the deep cryogenic heat treatment,” Mater. Lett., 93, 247 – 250 (2013).

    Article  CAS  Google Scholar 

  7. S. Li and X. Wu, “Microstructural evolution and corresponding property changes after deep cryotreatment of tool steel,” Mater. Sci. Technol., 31(15), 1867 – 1878 (2015).

    Article  CAS  Google Scholar 

  8. American Society for M. Transactions of American Society for Metals (1934).

  9. G. A. Stepanov, L. K. Lokhankina, and V. A. Gorbunov, “Structure and properties of steel 12Kh18N10T after prolonged operation at –183°C,” Metal Sci. Heat Treat., 18(5 – 6), 430 (1976).

    Google Scholar 

  10. K. Moore and D. N. Collins, “Cryogenic treatment of three heat treated tool steels,” Key Eng. Mater., 86 – 87, 47 – 54 (1993).

  11. Collins D. N., Dormer J. “Deep cryogenic treatment of a D2 cold-work tool steel,” Heat Treat. Metals, 24, 71 – 74 (1997).

    CAS  Google Scholar 

  12. D. Yun, L. Xiaoping, and X. Hongshen, “Classic contributions: cryogenic treatment Deep cryogenic treatment of high speed steel: microstructure and mechanism,” Int. Heat Treat. Surf. Eng., 2(2), 80 – 84 (2013).

    Google Scholar 

  13. R. Pillai, B. Pai, and K. Satyanarayana, “Deep cryogenic treatment of metals,” Tool Alloy Steels, 205 – 208 (1986).

  14. N. B. Dhokey and S. Nirbhavne “Dry sliding wear of cryotreated multiple tempered D-3 tool steel,” J. Mater. Proc. Technol., 209(3), 1484 – 1490 (2009).

    CAS  Google Scholar 

  15. D. Das, A K. Dutta, and K. K. Ray, “Inconsistent wear behaviour of cryotreated tool steels: role of mode and mechanism,” Mater. Sci. Technol., 25(10), 12449 – 1257 (2013).

    Google Scholar 

  16. A. Bensely, A. Prabhakaran, D. Mohan Lal, et al., “Enhancing the wear resistance of case carburized steel (EN 353) by cryogenic treatment,” Cryogenics, 45(12), 747 – 754 (2005).

    CAS  Google Scholar 

  17. K. K. Ray and D. Das, “Improved wear resistance of steels by cryotreatment: the current state of understanding,” Mater. Sci. Technol., 33(3), 340 – 354 (2016).

    Article  Google Scholar 

  18. K. Wang, K. Gu, J. Miao, et al., “Toughening optimization on a low carbon steel by a novel quenching-partitioning-cryogenictempering treatment,” Mater. Sci. Eng. A (2018).

  19. S. Zhirafar, A. Rezaeian, and M. Pugh, “Effect of cryogenic treatment on the mechanical properties of 4340 steel,” J. Mater. Proc. Technol., 186, No. 1–3, 298 – 303 (2007).

    Article  CAS  Google Scholar 

  20. V. Leskovšek, M. Kalin, and J. Vizintin, “Influence of deep-cryogenic treatment on wear resistance of vacuum heat-treated HSS,” Vacuum, 80(6), 507 – 518 (2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esad Kaya.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 6, pp. 44 – 50, June, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaya, E., Kılıçay, K. & Ulutan, M. Microstructure and Tribological Properties of Tool Steel AISI O2 After Thorough Cryogenic Heat Treatment. Met Sci Heat Treat 62, 399–404 (2020). https://doi.org/10.1007/s11041-020-00574-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-020-00574-5

Key words

Navigation