Skip to main content
Log in

Simulation of the Kinetics of Precipitation in a Cu – 2% Be Alloy

  • Published:
Metal Science and Heat Treatment Aims and scope

The kinetics of formation of precipitates in a Cu – 2% Be alloy is studied in terms of the Avrami and Orowan equations.We determine the structure and hardness of the alloy after aging at 260 – 440°C for 0.25 – 10 h and compute the activation energy of precipitates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. P. Wilkes, “Formation of Guinier–Preston zones in Cu – Be alloys,” Acta Metallurg., 16, 153 – 158 (1968).

    CAS  Google Scholar 

  2. G. E. Dieter, Jr., Mechanical Metallurgy, McGraw-Hill, New York (1976), pp. 120 – 121.

    Google Scholar 

  3. P. Behjati, H. V. Dastjerdi, and R. Mahdavi, “Influence of aging process on sound velocity in C17200 copper – beryllium alloy,” J. Alloys Comp., 505(2), 739 – 742 (2010).

    CAS  Google Scholar 

  4. T. Sakai, H. Miora, and N. Muramatsu, “Effect of small amount addition of Co on dynamic recrystallization of Cu – Be alloys,” Mater. Trans., JIM, 36(8), 1023 – 1030 (1995).

    CAS  Google Scholar 

  5. S. Nourbakhsh and J. Nutting, “The metallography of cuboid-shaped inclusions in commercial Cu – Be – Co alloy,” J. Mater. Sci., 14, 2642 – 2644 (1979).

    CAS  Google Scholar 

  6. M. Miki and Y. Ogino, “Effects of Co, Ni and Ti additions on the cellular precipitation in Cu – 2% Be alloys,” Mater. Trans., 35(3), 161 – 167 (1994).

    CAS  Google Scholar 

  7. R. J. Rioja and E. Laughlin, “The sequence of precipitation in Cu – 2% Be alloys,” Acta Metall., 28, 1301 – 1313 (1979).

    Google Scholar 

  8. B. Djuric and M. Jovanovic, “A study of precipitation in Cu – Be alloys,” J. Metallogr., 13, 235 – 247 (1980).

    CAS  Google Scholar 

  9. Y. M. Koo and J. B. Cohen, “The structure of GP zones in Cu – 10.9 at.% Be,” Acta Metall., 37(5), 1295 – 1306 (1989).

    CAS  Google Scholar 

  10. L. Yagmur, O. Duygulu, and B. Aydemir, “Investigation of metastable γ′ precipitate using HRTEM in aged Cu – Be alloy,” Mater. Sci. Eng., 528, 4147 – 4151 (2011).

    Google Scholar 

  11. V. A. Phillips and L. E. Tanner, “High resolution electron microscope observations on G.P. zones in an aged Cu – 1.97 wt.% Be crystal,” Acta Metall., 21, 441 – 448 (1973).

    CAS  Google Scholar 

  12. W. Bonfield and B. C. Edwards, “Precipitation hardening in Cu – 1.81 wt.% Be – 0.28 wt.% Co,” J. Mater. Sci., 9, 398 – 408 (1974).

    CAS  Google Scholar 

  13. G. Xie, Q. Wang, X. Mi, B. Xiong, and L. Peng, “The precipitation behavior and strengthening of a Cu – 2.0 wt% Be alloy,” Mater. Sci. Eng., A558, 326 – 330 (2012).

  14. R. Shiromizu and Y. Mishima, “Reversion of metastable phase in Cu – Be alloy,” J. Jap Inst., 35, 183 – 189 (1971).

    CAS  Google Scholar 

  15. J. G. Rocha, R. J. Rioja, and D. E. Laughlin, “The gamma phase boundary of Cu – Be alloys,” Metall. Trans., 15A, 939 – 942 (1984).

    Google Scholar 

  16. L. Yagmur, “Effect of microstructure on internal friction and Youngs modulus of aged Cu – Be alloy,” Mater. Sci. Eng., A523, 65 – 69 (2009).

  17. H. S. Hong, M. S. Kong, N. M. Sung, et al., “An investigation of the properties of Cu – Be – x alloys prepared by horizontal continuous casting,” J. Ceram. Proc. Res., 8(3), 164 – 166 (2007).

  18. M. Ryou, B. S. Lee, M. Myung, and H. Kim, “Influence of aging treatment on the mechanical and electrical properties of Cu – 0.5% Be alloy,” J. Mater. Sci. Technol., 24(1), 120 – 122 (2008).

    CAS  Google Scholar 

  19. K. P. Jen, L. Xu, S. Hylinski, and N. Gildersleeve, “Overaging effect on fracture toughness of beryllium copper alloy C17200,” J. Mater. Eng. Perform., 17(5), 714 – 724 (2008).

    CAS  Google Scholar 

  20. ASTM B 194-03. Standard Specification for Copper-Beryllium Alloy Plate, Sheet, Strip, and Rolled Bar. American Society for Testing Materials, Annual Book of ASTM Standards, V. 02.01 (2003).

  21. M. Avrami, “Granulation, phase change, and microstructure kinetics of phase change,” J. Chem. Phys., 9, 177 – 184 (1941).

    CAS  Google Scholar 

  22. E. A. Wilson, “Quantification of age hardening in an Fe – 12Ni – 6Mn alloy,” Scr. Mater., 36(10), 1179 – 1185 (1997).

    CAS  Google Scholar 

  23. J. W. Martin (ed.), Precipitation Hardening, Pergamon Press, Oxford (1998).

    Google Scholar 

  24. W. Sha, “Quantification of age hardening in maraging steels and a Ni-based super alloy,” Scr. Mater., 42, 549 – 553 (2000).

    CAS  Google Scholar 

  25. J. M. Pardal, S. S. M. Tavares, V. F. Terra, et al., “Modeling of precipitation hardening during the aging and overaging of 18Ni – Co – Mo – Ti maraging steel,” J. Alloys Comp., 393, 109 – 113 (2005).

    CAS  Google Scholar 

  26. A. Varschavsky and E. Donoso, “A differential scanning calorimetrie study of precipitation in Cu – 2Be,” Thermochim. Acta, 266, 257 – 275 (1995).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Asadabad.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 5, pp. 54 – 59, May, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asadabad, M.A., Mahdavi, R. Simulation of the Kinetics of Precipitation in a Cu – 2% Be Alloy. Met Sci Heat Treat 62, 349–354 (2020). https://doi.org/10.1007/s11041-020-00567-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-020-00567-4

Key words

Navigation