Skip to main content

Advertisement

Log in

Effect of Sintering Temperature on Mechanical Properties of Mg – HA Composites

  • TECHNICAL INFORMATION
  • Published:
Metal Science and Heat Treatment Aims and scope

Mg – HA (magnesium-hydroxyapatite) composites obtained by powder metallurgy and subjected to sintering at three different temperatures and subsequent hot extrusion for making orthopedic implants are studied. The relative density, the hardness and the properties after tensile and impact tests are determined with the use of optical and scanning electron microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  1. G. L. Makar and J. L. Kruger, “Corrosion of magnesium,” Int. Mater. Rev., 38(3), 138 – 153 (1993).

    Article  CAS  Google Scholar 

  2. Mark P. Staiger, Alexis M. Pietak, Jerawala Huadmai, and George Dias, “Magnesium and its alloys as orthopedic biomaterials: a review,” Biomaterials, 27, 1728 – 1734 (2006).

    Article  CAS  Google Scholar 

  3. Guangling Song and Shizhe Song, “A possible biodegradable magnesium implant material,” Adv. Eng. Mater., 9(4), 298 – 302 (2007).

    Article  CAS  Google Scholar 

  4. Julie Levesque, Dominigue Dube, Michel Fiset, and Diego Mantovani, “Investigation of corrosion behavior of magnesium alloy AM60B-F under pseudo-physiological conditions,” Mater. Sci. Forum, 426, 521 – 526 (2003).

  5. Yunchang Xin, Chenglong Liu, Xinmeng Zhang, et al., “Corrosion behavior of biomedical AZ91 magnesium alloy in simulated body fluids,” J. Mater. Res., 22(7), 2004 – 2011 (2007).

    Article  CAS  Google Scholar 

  6. Frank Witte, V. Laese, H. Haferkamp, et al., “In vivo corrosion of four magnesium alloys and the associated bone response,” Biomaterials, 26(17), 3557 – 3563 (2005).

    Article  Google Scholar 

  7. Frank Witte, Jens Fischer, Jens Nellesen, et al., “In vitro and in vivo corrosion measurements of magnesium alloys,” Biomaterials, 27(7), 1013 – 1018 (2006).

    Article  CAS  Google Scholar 

  8. Liping Xu, Guoning Yu, Erlin Zhang, et al., “In vivo corrosion behavior of Mg – Mn – Zn alloy for bone implant application,” J. Biomed. Mater. Res., Part A: Official J. Soc. Biomater., Jpn. Soc. Biomater., Australian Soc. Biomater., Korean Soc. Biomater., 83(3), 703 – 711 (2007).

    Article  Google Scholar 

  9. Chenglong Liu, Yunchang Xin, Xiubo Tian, and Paul K. Chu, “Degradation susceptibility of surgical magnesium alloy in artificial biological fluid containing albumin,” J. Mater. Res., 22(7), 1806 – 1814 (2007).

    Article  CAS  Google Scholar 

  10. H. Hu, A. Yu, and J. E. Allison, “Potential magnesium alloys for high temperature die cast applications: A review,” Mater. Manuf. Proc., 18, 687 – 717 (2003) (doi: https://doi.org/10.1081/AMP-120024970).

    Article  CAS  Google Scholar 

  11. B. L. Mordike and T. Ebert, “Magnesium properties – applications – potential,” Mater. Sci. Eng. A, 302, 37 – 45 (2001) (doi: https://doi.org/10.1016/S0921-5093(00)01351-4).

    Article  Google Scholar 

  12. L. Falcon-Franco, I. Rosales, S. Garcia-Villarreal, et al., “Synthesis of magnesium metallic matrix composites and the evaluation of aluminide nitride addition effect,” J. Alloys Compd., 663, 407 – 412 (2016) (doi: https://doi.org/10.1016/j.jallcom.2015.12.078).

    Article  CAS  Google Scholar 

  13. Qian Ma and David H. StJohn, “Grain nucleation and formation in Mg – Zr alloys,” Int. J. Cast Met. Res., 22(1 – 4), 256 – 259 (2009).

  14. David B. N. Lee, Martin Roberts, Christian G. Bluchet, and Ross A. Odell, “Zirconium: biomedical and nephrological applications,” Asaio J., 56(6), 550 – 556 (2010).

    Article  CAS  Google Scholar 

  15. F.Witte, F. Feyerabend, P. Mayer, et al., “Biodegradable magnesium – hydroxyapatite metal matrix composites,” Biomaterials (2007) (Elsevier DOI: https://doi.org/10.1016/j.biomaterials.2006.12.027).

  16. N. V. Ponraj, A. Azhagurajan, and S. C. Vettivel, “Microstructure, consolidation and mechanical behavior of Mg_n-TiC composite,” Alex. Eng. J., 55, 2077 – 2086 (2016).

    Article  Google Scholar 

  17. Vazquez C. Guzman, Barba C. Pina, and N. Munguia, “Stoichiometric hydroxyapatite obtained by precipitation and sol gel process,” Rev. Mexicana De Fisica, 51(3), 284 – 293.

  18. T. Kokubo, H. M. Kim, and M. Kawashita, “Novel bioactive materials with different mechanical properties,” Biomaterials, 24, 2161 – 2175 (2003).

    Article  CAS  Google Scholar 

  19. M. N. Krishnan, S. Suresh, and S. C. Vettivel, “Characterization, formability, various stresses and failure analysis on workability of sintered Mg – 5% B4C composite under triaxial stress state condition,” J. Alloys Compd., 747, 324 – 339 (2018).

    Article  Google Scholar 

  20. Mohamed M. Jinnah Sheik, N. Selvakumar, K. Jeyasubramanian, and S. C. Vettivel, “Numerical modelling on corrosion behavior of molybdenum-based ceramic nanocomposite coated mild steel using response surface methodology,” Int. J. Surf. Sci. Eng., 7(4), 345 – 365 (2013).

    Article  Google Scholar 

  21. N. V. Ponraj, A. Azhagurajan, S. C. Vettivel, and X. S. Shajan, “Modeling and optimization of the effect of sintering parameters on the hardness of copper_graphene nanosheet composites by response surface methodology,” Metal. Sci. Heat Treat., 60, 611 – 615 (2019).

    Article  CAS  Google Scholar 

  22. J. Zhou, X. Zhang, J. Chen, et al., “High temperature characteristics of synthetic hydroxyapatite,” J. Mater. Sci.: Mater. in Med., 4, 83 – 85 (1993).

  23. Chiu Chun, Chih-Te Lu, Zhin-Hsun Chen, and Keng-Liang Ou, “Effect of hydroxyapatite on the mechanical properties and corrosion behavior of Mg – Zn – Y alloy,” Materials, 10, 855 (2017).

  24. Zhiwei Wang, Yuhai Ma, Jie Wie, et al., “Effects of sintering temperature on surface morphology_microstructure, in vitro degradability, mineralization and osteoblast response to magnesium phosphate as biomedical material,” Sci. Rep., 7(1), 823 (2017).

  25. I. Dunaharan, S. C. Vettivel, M. Balakrishnan, and E. T. Akinlabi, “Influence of processing route on microstructure and wear resistance of fly ash reinforced AZ31 magnesium matrix composites,” J. Magn. Alloys, 7(1), 155 – 165 (2019).

    Article  Google Scholar 

  26. S. F. Hassan and M. Gupta, “Development of a novel magnesium- copper based composite with improved mechanical properties,” Mater. Res. Bull., 37(2), 377 – 389 (2002).

    Article  CAS  Google Scholar 

  27. Shuai Cijun, Yuanzhuo Zhou, Youwen Yang, et al., “Biodegradation resistance and bioactivity of hydroxyapatite enhanced Mg – Zn composites via selective laser melting,” Materials, 10, 307 (2017) (doi: https://doi.org/10.3390/ma10030307).

  28. K. Meisam and Habibi and Min Qian, “Differentiating the mechanical response of hierarchical magnesium nano-composite as a function of temperature,” Mater. Des., 42, 102 – 110 (2012) (doi https://doi.org/10.1016/j.matdes.2012.05.037).

  29. A. Daoud, M. T. Abou El-Khair,M. Abdel-Aziz, and P. Rohatgi, “Fabrication, microstructure and compressive behaviour of ZC63 Mg-microballoon foam composites,” Compos. Sci. Technol., 67(9), 1842 – 1853 (2007) (doi: https://doi.org/10.1016/j.compscitech.2006.10.023).

    Article  CAS  Google Scholar 

  30. M. Sivapragash, P. R. Lakshminarayanan, R. Karthikeyan, et al., “Hot deformation behavior of ZR41A magnesium alloy,” Mater. Des., 29, 860 – 866 (2008) (doi: https://doi.org/10.1016/j.matdes.2007.03.014).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T. Judson Durai, M. Sivapragash, S. C. Vettivel or P. Babu Aurtherson.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 4, pp. 44 – 50, April, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Durai, T.J., Sivapragash, M., Vettivel, S.C. et al. Effect of Sintering Temperature on Mechanical Properties of Mg – HA Composites. Met Sci Heat Treat 62, 285–291 (2020). https://doi.org/10.1007/s11041-020-00550-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-020-00550-z

Key words

Navigation