Skip to main content
Log in

Investigation of Nanometer- and Submicron-Size Dispersed Phases in Titanium Pseudo- β -Alloys using Scattering and Diffraction of Neutrons, Electrons, and X-Ray Radiation

  • Published:
Metal Science and Heat Treatment Aims and scope

The size and volume fraction of fine particles of secondary β -phase formed during hardening heat treatment of pseudo-β-titanium alloy VT22 are determined using low-angle scattering of neutrons, x-ray diffractometry, electron back-scatter diffraction, and transmission microscopy combined with x-ray spectral microanalysis. Based on comprehensive use of experimental data obtained by methods of different restriction levels analysis is conducted for the size, shape, elemental composition, and volume content of fine particles obtained after different versions of hardening heat treatment. Activation of β -phase decomposition energy due to low-temperature aging is determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

Notes

  1. For convenience specimens are given treated by regimes 2A and 2B labelled specimen 2A and 2B respectively.

References

  1. I. I. Novikov, Theory of Metal Hat Treatment: Handbook [in Russian], Metallurgiya, Moscow (1986).

    Google Scholar 

  2. A. S. Zubchenko, N. V. Sharyi, and V. P. Rabinovich, “Corrosion-resistant in sea water austenitic-ferritic steel SAF 2507 (X2CRNIMON 2574),” Vopr. Atom. Nauki Tekhniki, Ser. Obesp. Bezopas. AÉS, No. 34, 42 – 52 (2014).

  3. G. Vais, S. Schubert, and E. Ratke, “High-strength corrosion-resistant steels in automobile building,” Chern. Met., No. 1, 43 – 46 (2009).

  4. N. A. Nochovnaya, P. V. Panin, E. B. Alekseev, and K. A. Bokov, “Contemporary economically alloyed titanium alloys: usage and development prospects,” Metalloved. Term. Obrab. Met., No. 9, 8 – 15 (2016).

  5. O. V. Kondrat’eva, S. Y. Kondrat’ev, and O. V. Shvetsov, “A study of modes of hardening heat treatment of titanium alloy VT23,” Met. Sci. Heat Treat., 60(11–12), 715 – 721 (2019).

    Article  Google Scholar 

  6. S. T. Kishkin, G. B. Stroganov, A. V. Logunov, et al., “Carbide phases in nickel superalloys with hafnium,” Izv. Akad. Nauk SSSR, Metally, No. 5, 143 – 149 (1983).

  7. S. Y. Kondrat’ev, G. P. Anastasiadi, S. N. Petrov, and A. V. Ptashnik, “Kinetics of the formation of intermetallic phases in hp-type heat-resistant alloys at long-term high-temperature exposure,” Metall. Mater. Trans. A, 48(1), 482 – 492 (2017).

    Article  Google Scholar 

  8. A. I. Rudskoi, G. P. Anastasiadi, S. Yu. Kondrat’ev, A. S. Oryshchenko, and M. D. Fuks, “Effect of electron factor (number of electron holes) on kinetics of nucleation, growth, and dissolution of phases during long-term high-temperature holdings of 0.45C – 26Cr – 33Ni – 2Si – 2Nb superalloy,” Phys. Met. Metallogr., 115(1), 1 – 11 (2014).

    Article  Google Scholar 

  9. S. V. Rogozhkin, N. N. Orlov, A. A. Nikitin, et al., “Study of the nanostructure condition of 13.5% Cr steels dispersion strengthened with oxides with variation of titanium content,” Perspekt. Mater., No. 12, 38 – 44 (2014).

  10. V. S. Ageev, A. A. Nikitina, M. V. Leon’teva-Smirnova, et al., “Development of work for DUO ferrite-martensite steels for innovative fast neutron reactors,” Vopr. Atom. Nauk. Tekhn., Ser. Materialoved. Novye Mater., 70(1), 47 – 52 (2008).

    Google Scholar 

  11. S. V. Rogozhkin, A. A. Bogachev, and O. N. Orlov, “Study by transmission electron microscopy methods of steels dispersion strengthened with oxide under action of heavy ion irradiation action,” Metally, No. 4, 20 – 26 (2017).

  12. N. N. Orlov, S. V. Rogozhkin, A. A. Bogachev, et al., “Atomic probe study of the change in nanostructure of steels dispersion strengthened with oxides under action of heavy ion radiation,” Metally, No. 4, 70 – 76 (2017).

  13. A. Yu. Kipelova, A. N. Belyakov, V. N. Skorobogaykh, et al., “Structural changes during tempering of steel 10Kh9K3VM1FBR and their effect on mechanical properties,” Metalloved. Term. Obrab. Met., No. 3, 14 – 25 (2010).

  14. E. V. Razhkova and M. E. Garber, “Effect of carbide dimensions on wear resistance of high-chromium cast iron,” Chern. Met., No. 11, 18 – 21 (2008).

  15. A. I. Rudskoy, A. S. Oryshchenko, S. Yu. Kondrat’ev, G. P. Anastasiadi, M. D. Fuks, and S. N. Petrov, “Special features of structure and long-term strength of cast refractory alloy 45Kh26N33S2B2,” Met. Sci. Heat Treat., 55(3–4), 209 – 215 (2013).

    Article  CAS  Google Scholar 

  16. V. I. Btekhtin, Yu. R. Kolobov, V. Sklenika, et al., “Study of the effect of structure on static and stress-rupture strength of sub-microcrystalline titanium VT1-0 obtained after plastic deformation during screw and longitudinal rolling,” Zh. Tekhn. Fiz., 85(1), 66 – 72 (2015).

    Google Scholar 

  17. V. I. Gorynin, S. Yu. Kondrat’ev, and M. I. Olenin, “Raising the resistance of pearlitic and martensitic steels to brittle fracture under thermal action on the morphology of the carbide phase,” Met. Sci. Heat Treat., 55(9 – 10), 533 – 539 (2014).

  18. V. I. Gorynin, S. Yu. Kondrat’ev, M. I. Olenin, and V. V. Rogozhkin, “A concept of carbide design of steels with improved cold resistance,” Met. Sci. Heat Treat., 56(9 – 10), 548 – 554 (2015).

  19. V. I. Butenko, D. F. Durov, and R. G. Shapovalov, “Effect of nonmetallic inclusions and carbides on the structure and properties of alloy steels,” Vopr. Materialoved., No. 3, 19 – 27 (2004).

  20. V. G. Khanzhin, S. A. Nikulin, V. A. Belov, et al., “Steel hydrogen embrittlement. III. Effect of second phase particles,” Deform. Razrush. Mater., No. 3, 34 – 40 (2012).

  21. L. G. Korshunov, I. I. Kosintsina V. V. Sagaradze, and N. L. Chernenko, “Effect of carbide phase on tribological properties of high-manganese antiferromagnetic austenitic steel alloyed with vanadium and molybdenum,” Fiz. Met. Metalloved., 112(1), 94 – 104 (2011).

    CAS  Google Scholar 

  22. A. I. Rudskoy, A. S. Oryshchenko, S. Yu. Kondrat’ev, G. P. Anastasiadi, and M. D Fuks, “Mechanisms and kinetics of phase transformations in refractory alloy 45Kh26N33S2B2 in long-term high-temperature holds. Part 1,” Met. Sci. Heat Treat., 56(1 – 2), 3 – 8 (2014).

  23. A. I. Rudskoy, S. Yu. Kondrat’ev, G. P. Anastasiadi, A. S. Oryshchenko, and M. D Fuks, “Mechanism and kinetics of phase transformations in refractory alloy 45Kh26N33S2B2 under long-term high-temperature holds. Part 2,” Met. Sci. Heat Treat., 56(3 – 4), 124 – 130 (2014).

  24. S. Yu. Kondrat’ev, A. V. Ptashnik, G. P. Anastasiadi, and S. N. Petrov, “Analysis of transformations of carbide phases in alloy 25Cr35Ni by the method of quantitative electron microscopy,” Met. Sci. Heat Treat., 57(7 – 8), 402 – 409 (2015).

  25. S. Yu. Kondrat’ev, E. V. Sviatysheva, G. P. Anastasiadi, and S. N. Petrov, “Fragmented structure of niobium carbide particles in as-cast modified HP alloys,” Acta Mater., 127, 267 – 276 (2017).

    Article  Google Scholar 

  26. E. A. Kuleshova, E. R. Cherkasova, and A. V. Logunov, “Dendrite liquation in nickel superalloys,” Metalloved. Term. Obrab. Met., No. 6, 2 – 23 (1981).

    Google Scholar 

  27. O. S. Komarov, E. V. Rozenberg, N. I. Ubranovich, and K. É. Baranovskii, “Effect of microstructure on liquation in a steel ingot,” Lit’e Metallurg., No. 1(86), 45 – 49 (2017).

  28. M. L. Fedoseev,M. S. Mukhailov, N. F. Drozdova, et al., “Comprehensive approach to studying dispersed precipitates in high-strength steel,” Perspekt. Mater., No. 6, 69 – 79 (2018).

  29. M. L. Fedoseev, S. N. Petrov, A. K. Islamov, et al., “Comprehensive approach to quantitative description of carbides in high-strength steel,” Pis’ma Mater., No. 8, 323 – 328 (2018).

  30. V. N. Moiseev, “_-titanium alloys and pr0spects for their development,” Metalloved. Term. Obrab. Met., No. 12, 11 – 14 (1998)

  31. A. S. Kuryavtsev, E. V. Chudakov, V. P. Kulik, and N. V. Tret’yakova, “Effect of phase composition on corrosion and mechanical strength of titanium pseudo-β-class titanium alloys,” Materialoved., No. 2, 10 – 14 (2017).

  32. Y. M. Ostanevich, “Time-of-flight small-angle scattering spectrometers on pulsed neutron sources,” Macromol. Chem. Macromol. Symp., No. 15, 91 – 103 (1988).

  33. A. I. Kuklin, A. K. Islamov, and V. I. Gordeliy, “Scientific reviews: Two-Detector system for small-angle neutron scattering instrument,” Neutron News, 16(3), 16 – 18 (2005).

    Article  Google Scholar 

  34. A. G. Solov’ev. T. M. Solov’eva, A. V. Stadnik, et al., “SAS. Program for primary treatment of low-angle scattering spectra,” in: JINR Preprints and Communications, 10-2003-86 (2003).

  35. A. G. Soloviev, T. M. Solovieva, O. I. Ivankov, et al., “SAS program for two-detector system: seamless curve from,” J. Phys.: Conf. Ser., 848, 012020 (2017).

  36. D. I. Svergun and L. A. Feiglin, X-ray and Neutron Low-Angle Scattering [in Russian], Nauka, Moscow (1986).

    Google Scholar 

  37. F. Cousin, “Small angle neutron scattering,” EPJ Web of Conferences, No. 104, 01004 (2015).

  38. J. I. Qazi, O. N., Senkov, J. Rahim, et al., “Phase transformation in Ti – 6Al – 4V – xH alloys,” Metall. Mater. Trans. A, 32A, 2453 – 2461 (2001).

  39. A. A. Il’in, B. A. Kolachev, and I. S. Pol’kin, Titanium Alloys. Composition, Structure, Properties: Handbook [in Russian], VILS – MATI, Moscow (2009).

Download references

Experimental research was conducted on equipment of the Center for Collective Usage of Scientific Equipment “Composition, structure and properties of structural and functional materials” NITs Kurchatov Institute – TsNII KM Prometei with financial support of an agreement No. 14.595.21.004, unique identifier RFMEF159517X0004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Petrov.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 1, pp. 93 – 101, January, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrov, S.N., Drozdova, N.F., Fedoseev, M.L. et al. Investigation of Nanometer- and Submicron-Size Dispersed Phases in Titanium Pseudo- β -Alloys using Scattering and Diffraction of Neutrons, Electrons, and X-Ray Radiation. Met Sci Heat Treat 62, 95–102 (2020). https://doi.org/10.1007/s11041-020-00519-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-020-00519-y

Key words

Navigation