Skip to main content
Log in

Additive Synergy Technologies of Formation of Surface Layer of a Complex-Profile Article

  • Published:
Metal Science and Heat Treatment Aims and scope

Systematic analysis of the state and prospects of the development of additive technologies for computer-aided production is conducted to show a new paradigm of their evolution. An approach determining the additive methods as synergy technologies that provide self-organization of surface phenomena is suggested. The new approach is used for choosing the most efficient energy sources and materials for the technologies of layer-by-layer synthesis of articles. It is shown that stabilization of the thickness of the formed layers correlates with the processes of self-organization of surface phenomena and design features of the articles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Gibson, D. Rosen, and B. Stuker, Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing, Springer, New York (2015).

    Book  Google Scholar 

  2. F. Froes and R. Boyer (eds.), Additive Manufacturing for the Aerospace Industry, Elsevier, Cambridge (2019).

    Google Scholar 

  3. A. I. Rudskoy, S. Yu. Kondrat’ev, and Yu. A. Sokolov, “New approach to synthesis of powder and composite materials by electron beam. Part 1. Technological features of the process,” Met. Sci. Heat Treat., 58(1–2), 27 – 32 (2016).

    Article  CAS  Google Scholar 

  4. M. L. Kheifets, L. M. Kozhuro, and Zh. A. Mrochek, Processes of Self-Organization during the Formation of Surfaces [in Russian], IMMS NANB, Gomel (1999).

    Google Scholar 

  5. A. I. Gordienko, M. L. Kheifetz, L. M. Kozhouro, et al., Combined Physico-Chemical Treatment: Synergetic Aspect, Technoprint, Minsk (2004).

    Google Scholar 

  6. P. A. Vitiaz, M. L. Kheifetz, and S. V. Koukhta, Laser-Plasma Techniques in Computer-Controlled Manufacturing, Belorusskaya Nauka, Minsk (2011).

    Google Scholar 

  7. A. I. Rudskoy, K. N. Volkov, S. Yu. Kondrat’ev, and Yu. A. Sokolov, Physical Processes and Technologies for Producing Metal Powders from Melt [in Russian], Izd-vo Politekhnicheskogo Universiteta, St. Petersburg (2018).

    Google Scholar 

  8. A. I. Rudskoi, S. Yu. Kondrat’ev, Yu. A. Sokolov, and V. N. Kopaev, “Simulation of the layer-by-layer synthesis of articles with an electron beam,” Tech. Phys., 60(11), 1663 – 1669 (2015).

    Article  CAS  Google Scholar 

  9. M. L. Kheifets, Formation of the Materials Properties in the Layer-by-Layer Synthesis of Articles [in Russian], PGU, Novopolotsk (2001).

    Google Scholar 

  10. A. M. Rusetskii (ed.), Theoretical Foundations of Technological Complexes Design [in Russian], Belorusskaya Nauka, Minsk (2012).

    Google Scholar 

  11. V. N. Poduraev, Technology of Physical-Chemical Processing Methods [in Russian], Mashinostroenie, Moscow (1985).

    Google Scholar 

  12. B. I. Kostetskii, I. G. Nosovskii, L. I. Bershadskii, and A. K. Karaulov, Reliability and Durability of Machines [in Russian], Tekhnika, Kiev (1975).

    Google Scholar 

  13. M. L. Kheifets, Design Processes of Combined Processing [in Russian], Mashinostroenie, Moscow (2005).

    Google Scholar 

  14. O. P. Golubev, S. V. Kuchta, Zh. A. Mrochek, et al., Advanced Technologies of Machinery Production [in Russian], PGU, Novopolotsk (2007).

    Google Scholar 

  15. Zh. I. Alferov, “The history and future of semiconductor heterostructures,” Fiz. Tekhn. Poluprovodn., 32(3), 2 – 7 (1998).

    Google Scholar 

  16. M. L. Kheifets, “Additive synergy technologies of the layer-by-layer synthesis of articles from composite materials under the energy flow exposure,” Naukoemk. Tekhnol. Mashinostr., No. 4(58), 3 – 9 (2016).

  17. P. A. Vityaz, M. L. Kheifets, and S. A. Chizhik, “Industry 4.0: from information and communication and additive technologies to self-reproduction of machines and organisms,” Izv. Nats. Akad. Nauk Belarusi, Ser. Fiz.-Tekhn. Nauk, No. 2, 54 – 72 (2017).

  18. N. N. Dorozhkin, V. A. Mironov, V. A. Vereshchagin, and A. A. Kot, Electrophysical Methods for Producing Coatings from Metal Powders [in Russian], Zinatne, Riga (1985).

    Google Scholar 

  19. V. N. Tkachev, B. M. Fishtein, N. V. Kazintsev, and D. A. Aldyrev, Induction Surfacing of Hard Alloys [in Russian], Mashinostroenie, Moscow (1970).

    Google Scholar 

  20. P. A. Vityaz, V. S. Ivashko, and E. D. Manoilo, Theory and Practice of Flame Spraying [in Russian], Navuka i Tekhnika, Minsk (1993).

    Google Scholar 

  21. M. L. Kheifets, L. M. Akulovich, Zh. A. Mrochek, and E. Z. Zeveleva, Electrophysical and Electrochemical Methods of Materials Processing [in Russian], PGU, Novopolotsk (2012).

    Google Scholar 

  22. E. D. Eidelman, “Excitation of electric instability by heating,” Usp. Fiz. Nauk, 165(11), 1279 – 1294 (1995).

    Article  CAS  Google Scholar 

  23. L. G. Loytsyansky, Mechanics of Liquids and Gases [in Russian], Nauka, Moscow (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Chizhik.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 1, pp. 11 – 18, January, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chizhik, S.A., Vityaz, P.A. & Kheifets, M.L. Additive Synergy Technologies of Formation of Surface Layer of a Complex-Profile Article. Met Sci Heat Treat 62, 11–17 (2020). https://doi.org/10.1007/s11041-020-00506-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-020-00506-3

Key words

Navigation