Skip to main content
Log in

Structural Aspects of Zones of Plastic Strain. Part III. Effect of Thermal Stability of Bands of Adiabatic Shear

  • Published:
Metal Science and Heat Treatment Aims and scope

The structure of initially high-tempered steel 09G2S (quenched and tempered at 650°C) is studied quantitatively inside the zone of plastic strain formed by the force impact of the hammer of the impact machine under dynamic three-point bending. After the impact tests, the specimen exhibits features of plastic flow of the material and bands of adiabatic shear. Additional annealing at 600°C with a hold for from 7.5 to 24 h causes stage evolution of the structure of the bands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

References

  1. O. B. Neimark and M. A. Sokovnikov, “About the mechanism of adiabatic shear under high-speed loading of materials,” Matem. Model. Syst. Prots., 3, 71 – 76 (1995).

    Google Scholar 

  2. M. Sokovnikov, D. Bilalov, V. Oborin, et al., “Structural mechanisms of formation of adiabatic shear bands,” Frattura Integr. Strutturale, 10(38), 296 – 304 (2016).

    Article  Google Scholar 

  3. C. G. Lee and Y. J. Lee, “Observation of adiabatic shear bands formed by ballistic impaction of aluminum-lithium alloys,” Scr. Metall. Mater., 32, 821 – 826 (1885).

    Article  Google Scholar 

  4. Y. Yang, Z. Xinming, L. Zhenghua, and L. Qingyun, “Adiabatic shear band on the titanium side in the Ti – mild steel explosive cladding interface,” Acta Mater., 44(2), 561 – 565 (1996).

    Article  CAS  Google Scholar 

  5. M. A. Meyers and H. R. Pak, “Observation of an adiabatic shear band in titanium by high-voltage transmission electron microscopy,” Acta Metall., 34, 2493 – 2499 (1986).

    Article  CAS  Google Scholar 

  6. M. P. Bondar, S. G. Psakh’e, A. I. Dmitriev, and A. Yu. Nikonov, “Conditions of localization of strain and fragmentation of microstructure under rapid loading,” Fiz. Mesomekh., 16(2), 5 – 13 (2013).

    CAS  Google Scholar 

  7. T. W. Wright, The Physics and Mathematics of Adiabatic Shear Bands, University Press, Cambridge (2002), p. 240.

  8. A. F. Belikova, S. N. Buravova, Yu. A. Gordopolov, and I. V. Saikov, “Nature of formation of bands of localized strain under dynamic loads,” Vest. TGU, 16(3), 908 – 909 (2010).

    Google Scholar 

  9. M. Yu. Simonov, O. B. Naimark, Yu. N. Simonov, et al., “Structural aspects of zones of plastic strain. Part I. Effect of adiabatic shear,” Metalloved. Term. Obrab. Met., No. 10, 43 – 63 (2019).

  10. M. Yu. Simonov, Yu. N. Simonov, and G. S. Shaimanov, “Structural and fractographic features of formation of splits in a low-alloy steel subjected to thermal deformation treatment,” Metalloved. Term. Obrab. Met., No. 10, 5 – 15 (2019).

    Google Scholar 

  11. T. W. Wright and G. Ravichandran, “Canonical aspects of adiabatic shear bands,” Int. J. Plasticity, 13(4), 309 – 325 (1997).

    Article  Google Scholar 

  12. Y. Z. Guo, Q. C. Ruan, S. X. Shu, et al., “Temperature rise associated with adiabatic shear band: Causality clarified,” Phys. Rev. Lett., 122(1), 015503 (2019).

  13. A. Molinari and R. J. Clifton, “Analytical characterization of shear localization in thermoviscoplastic materials,” J. Appl. Mech., 54, 806 – 812 (1987).

    Article  Google Scholar 

  14. D. Rittel, P. Landau, and A. Venkert, “Dynamic recrystallization as a potential cause for adiabatic shear failure,” Phys. Rev. Lett., 101, 165501 (2008).

    Article  CAS  Google Scholar 

  15. T. J. Burns, “Does a shear band result from a thermal explosion,” Mech. Mater., 17(2 – 3), 261 – 271 (1994).

  16. L. H. Zhang, D. Rittel, and S. Osovski, “Thermo-mechanical characterization and dynamic failure of near alpha and near beta titanium alloys.” Mater. Sci. Eng. A, Structural Mat. Prop. Microstr. Process., 729, 94 – 101 (2018).

  17. C. Froustey, O. B. Naimark, I. A. Panteleev, et al., “Multiscale mechanisms of structural relaxation and adiabatic shear failure mechanisms,” Phys. Mesomech., 20(1), 31 – 42 (2017).

    Article  Google Scholar 

  18. M. A. Sokovikov, D. A. Bilalov, V. V. Chudinov, et al., “Non equilibrium transitions in ensembles of defects attributed to dynamic localization of plastic deformation,” Tech. Phys. Lett., 40(12), 1075 – 1077 (2014).

    Article  CAS  Google Scholar 

  19. D. A. Bilalov, M. A. Sokovikov, V. V. Chudinov, et al., “Numerical simulation and experimental study of plastic strain localization under dynamic loading of specimens in condition close to a pure shear,” J. Appl. Mech. Tech. Phys., 59(7), 1179 – 1188 (2018).

    Article  CAS  Google Scholar 

  20. D. A. Bilalov, M. A. Sokovikov, and V. V. Chudinov, “Multiscale mechanisms of localization of plastic strain in piercing of obstacles,” Deform. Razrush. Mater., No. 5, 43 – 47 (2017).

    Google Scholar 

  21. D. Rittel, Z. G. Wang, and M. Merzer, “Adiabatic shear failure and dynamic stored energy of cold work,” Phys. Rev. Lett., 96, 075502 (1 – 4), 2006).

  22. M. Yu. Simonov, M. N. Georgiev, G. S. Shaimanov, et al., “Comparative analysis of zones of plastic strain, dynamic crack resistance, structure and micromechanisms of crack growth of steels 09G2S, 25 and 40 in high-toughness condition,” Metalloved. Term. Obrab. Met., No. 2, 39 – 48 (2016).

    Google Scholar 

  23. V. E. Panin, A. V. Panin, D. D. Moiseenko, et al., “The physical mesomechanics of deformable solid body as a multilevel system. II. Phenomenon of interpenetration of particles of unlike solids without disturbing continuity under the action of concentrated energy sources,” Fiz. Mezomekh., 4(9), 5 – 13 (2006).

    Google Scholar 

  24. M. Yu. Simonov, “Structural aspects of zones of plastic strain. Part II. Effect of mass transfer,” Metalloved. Term. Obrab. Met., No. 10, 54 – 63 (2019).

  25. M. N. Georgiev, M. Yu. Simonov, and Yu. N. Simonov, “Assessment of the fracture energy of impact specimens with side notches,” Zavod. Lab., Diagn. Mater., 78(9), 56 – 61 (2012).

    Google Scholar 

  26. M. Yu. Simonov, Yu. N. Simonov, A. M. Khanov, and G. S. Shaimanov, “Structure, dynamic crack resistance and fracture mechanisms of quenched and tempered structural steels,” Metalloved. Term. Obrab. Met., No. 11, 32 – 29 (2012).

    Google Scholar 

  27. M. Yu. Simonov, M. N. Georgiev, Yu. N. Simonov, and G. S. Shaimanov, “Assessment of the sizes of the zone of plastic strain of high-toughness materials after dynamic tests by the method of systematic measuring of microhardness,” Metalloved. Term. Obrab. Met., No. 11, 40 – 45 (2012).

    Google Scholar 

  28. M. Yu. Simonov, G. S. Shaimanov, and Yu. N. Simonov, “Formation of zones of plastic strain in quenched and tempered steel 09G2S during dynamic tests,” Metalloved. Term. Obrab. Met., No. 12, 44 – 50 (2015).

    Google Scholar 

Download references

The work has been performed within the state assignment conducted by the research stuff on a permanent base (No. 9.7893.2017ITR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yu. Simonov.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 10, pp. 64 – 71, October, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simonov, M.Y., Naimark, O.B., Simonov, Y.N. et al. Structural Aspects of Zones of Plastic Strain. Part III. Effect of Thermal Stability of Bands of Adiabatic Shear. Met Sci Heat Treat 61, 648–656 (2020). https://doi.org/10.1007/s11041-020-00473-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-020-00473-9

Keywords

Navigation