Skip to main content
Log in

Structural Aspects of Zones of Plastic Strain. Part II. Effect of Mass Transfer

  • Published:
Metal Science and Heat Treatment Aims and scope

The structure of steel 09G2S is studied after high tempering in different zones of plastic strain (ZPS) after testing for impact bending and dynamic crack resistance, i.e., in the starting zone, in the core, and in the region of the force impact of the hammer of the impact machine. The proportions, the sizes, and the elemental compositions of carbide particles in the matrix metal, in the zones closest to the place of the impact, and in the regions of mass transfer are determined. The features of the structure in the starting region of the ZPS and in the region of the force impact of the hammer are determined after additional annealing at 600°C for 1 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

Notes

  1. The author is obliged to Yu. N. Simonov for the scientific consultation and to G. S. Shaimanov, D. D. Karpova and A. N. Yurchenko for the quantitative studies of the sizes of structural components.

References

  1. V. E. Panin, A. V. Panin, D. D. Moiseenko, et al., “Physical mesomechanics of deformable solid body as a multilevel system. II. Phenomenon of interpenetration of particles of unlike solid bodies without disturbing continuity under the action of concentrated energy fluxes,” Fiz. Mesomekh., 4(9), 5 – 13 (2006).

    Google Scholar 

  2. M. P. Bondar’, “Structure formation and properties of materials created by rapid methods,” 3(6), 75 – 87 (2000).

  3. V. E. Panin, V. E. Egorushkin, Yu. A. Khon, and T. F. Elsukova, “Atom-vacancy states in crystals,” Izv. Vysh. Uchebn. Zaved., Fiz., 24(12), 5 – 28 (1982).

    Google Scholar 

  4. V. E. Panin, “A new field of solid physics,” Izv. Vysh. Uchebn. Zaved., Fiz., 30(1), 3 – 8 (1987).

    Google Scholar 

  5. V. E. Egorushkin, V. E. Panin, E. V. Savushkin, and Yu. A. Khon, “Strongly excited states in crystals,” Izv. Vysh. Uchebn. Zaved., Fiz., 30(1), 9 – 33 (1987).

    CAS  Google Scholar 

  6. H. Andrew Grebe, Han-Ryong Pak, and Mark A. Meyers, “Adiabatic shear localization in titanium and Ti – 6 pct Al – 4 pct V alloy,” Metall. Trans. A, 16A, 761 – 775 (1085).

  7. C. Froustey, O. B. Naimark, I. A. Panteleev, et al., “Multiscale structural relaxation and adiabatic shear failure mechanisms,” Phys. Mesomech., 20(1), 31 – 42 (2017).

    Article  Google Scholar 

  8. P. Landau, A. Venkert, and D. Rittel, “Microstructural aspects of adiabatic shear failure in annealed Ti6Al4V,” Metall. Mater. Trans. A, 41A, 389 – 396 (2010).

    Article  CAS  Google Scholar 

  9. M. P. Bondar and O. L. Pervukhina, “Dependence of titanium structure formed under rapid loading on its initial condition,” Fiz. Goren. Vzryva, 36(2), 110 – 121 (2000).

    CAS  Google Scholar 

  10. T. W. Wright, The Physics and Mathematics of Adiabatic Shear Bands, University Press, Cambridge (2002), p. 240.

    Google Scholar 

  11. E. A. Lyapunova, A. N. Petrova, I. G. Brodova, et al., A study of the morphology of multiscale faulted structures and localization of plastic strain in piercing of targets from alloy A6061,” Pis’ma Zh. Teor. Fiz., 38(1), 13 – 20 (2012).

  12. D. A. Bilalov, M. A. Sokovikov, V. V. Chudinov, et al., “Numerical simulation and experimental investigation of localization of plastic strain under dynamic loading of specimens under conditions close to pure shear,” Vychisl. Mekh. Splosh. Sred, 10(1), 103 – 112 (2017).

    Google Scholar 

  13. A. F. Belikova, S. N. Buravova, and Yu. A. Gordopolov, “Localization of strain and its relation to the deformed condition of the material,” Zh. Teor. Fiz., 83(2), 153 – 155 (2013).

    Google Scholar 

  14. D. Rittel, Z. G. Wang, and M. Merzer, “Adiabatic shear failure and dynamic stored energy of cold work,” Phys. Rev. Lett., 96, 075502 (1 – 4) (2006).

  15. M. Yu. Simonov, O. B. Naimark, Yu. N. Simonov, et al., “Structural aspects of zones of plastic strain. Part I. Effect of adiabatic shear,” Metalloved. Term. Obrab. Met., No. 10, 43 – 53 (2019).

  16. A. F. Belikova, S. N. Buravova, Yu. A. Gordipolov, and I. V. Saikov, “Nature of formation of bands of localized strain under dynamic loads,” Vest. TGU, 16(3), 908 – 909 (2010).

    Google Scholar 

  17. M. Yu. Simonov, Yu. N. Simonov, and G. S. Shaimanov, “Structural and fractographic features of formation of splits in low-carbon steel subjected to thermal deformation treatment,” Metalloved. Term. Obrab. Met., No. 10, 5 – 15 (2019).

    Google Scholar 

  18. R. Z. Valiev, “Creation of nanostructured materials and alloys with unique properties using severe plastic deformation,” Ross. Nanotekh., 1(1 – 2), 208 – 216 (2006).

  19. M. Yu. Simonov, M. N. Georgiev, G. S. Shaimanov, et al., “Comparative analysis of zones of plastic strain, dynamic crack resistance, structure and micromechanisms of crack growth of steels 09G2S, 25 and 40 in high-toughness condition,” Metalloved. Term. Obrab. Met., No. 2, 39 – 48 (2016).

    Google Scholar 

  20. M. Yu. Simonov, G. S. Shaimanov, and Yu. N. Simonov, “Formation of zones of plastic strain in quenched and tempered steel 09G2S during dynamic tests,” Metalloved. Term. Obrab. Met., No. 12, 44 – 50 (2015).

    Google Scholar 

  21. M. N. Georgiev,M. Yu. Simonov, and Yu. N. Simonov, “Assessment of the fracture energy of impact specimens with side notches,” Zavod. Lab., Diagn. Mater., 78(9), 56 – 61 (2012).

    Google Scholar 

  22. M. Yu. Simonov, Yu. N. Simonov, A. M. Khanov, and G. S. Shaimanov, “Structure, dynamic crack resistance and fracture mechanisms of quenched and tempered structural steels,” Metalloved. Term. Obrab. Met., No. 11, 32 – 29 (2012).

    Google Scholar 

  23. M. Yu. Simonov, M. N. Georgiev, Yu. N. Simonov, and G. S. Shaimanov, “Assessment of the sizes of the zone of plastic strain of high-toughness materials after dynamic tests by the method of systematic measuring of microhardness,” Metalloved. Term. Obrab. Met., No. 11, 40 – 45 (2012).

    Google Scholar 

  24. V. V. Rybin, High Plastic Deformations and Fracture of Materials [in Russian], Metallurgiya, Moscow (1986), 224 p.

  25. M. Yu. Simonov, G. S. Shaimanov, A. S. Pertsev, et al., “Dynamic crack resistance and structure of a tubular billet from steel 09G2S after thermal deformation treatment,” Metalloved. Term. Obrab. Met., No. 6, 64 – 71 (2017).

    Google Scholar 

  26. M. Yu. Simonov, O. B. Naimark, Yu. N. Simonov, et al., “Structural aspects of zones of plastic strain. Part III. Effect of thermal stability of a structure of adiabatic shear,” Metalloved. Term. Obrab. Met., No. 10, 64 – 71 (2019).

Download references

The work has been performed within the state assignment conducted by the research stuff on a permanent base (No. 9.7893.2017/ITR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yu. Simonov.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 10, pp. 54 – 63, October, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simonov, M.Y. Structural Aspects of Zones of Plastic Strain. Part II. Effect of Mass Transfer. Met Sci Heat Treat 61, 639–647 (2020). https://doi.org/10.1007/s11041-020-00472-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-020-00472-w

Keywords

Navigation