Skip to main content
Log in

Structural Aspects of Zones of Plastic Strain. Part I. Effect of Adiabatic Shear

  • Published:
Metal Science and Heat Treatment Aims and scope

The structure, the dynamic crack resistance, and the characteristics of mechanical properties of quenched and tempered structural steel 09G2S are studied. Special features of structure in the zones of plastic strain (ZPS) under fracture surfaces are considered after a single dynamic test. The structural features of bands of adiabatic shear formed in the starting region of the zone of plastic strain and in the region of the force action of the hammer are studied. The influence of formation of bands of adiabatic shear on the level of dynamic crack resistance is assessed. The temperatures arising in the material in the process of three-point dynamic bending are calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

References

  1. K. Turner, “Variation of fracture toughness under impact testing with oscillography,” in: Impact Testing of Metals [Russian translation], Mir, Moscow (1973), pp. 100 – 122.

  2. N. G. Chausov, E. E. Zasimchuk, L. I. Markashova, et al., “Special features of deformation of ductile materials under dynamic nonequilibrium processes,” Zavod. Lab., Diagn. Mater., 75(6), 52 – 59 (2009).

    Google Scholar 

  3. A. A. Kaminskii and V. M. Pestrikov, “Subcritical crack growth in viscoelastic aging materials,” Prikl. Mekh., 17(10), 112 – 116 (1981).

    Google Scholar 

  4. Yu. G. Matvienko and E. M. Morozov, “Some problems in linear and non-linear fracture mechanics,” Eng. Fract. Mech., 28(2), 127 – 138 (1987).

    Article  Google Scholar 

  5. G. I. Barenblatt, “Mathematical theory of equilibrium cracks forming under brittle fracture,” Prikl. Mekh. Tekh. Fiz., No. 4, 3 – 56 (1961).

    Google Scholar 

  6. B. A. Drozdovskii and E. M. Morozov, “About two mechanical characteristics assessing fracture resistance,” Zavod. Lab., No. 1, 78 – 89 (1971).

    Google Scholar 

  7. A. E. Andreikin, Fracture of Quasi-Brittle Bodies with Cracks under a Complex Stress State [in Russian], Naukova Dumka, Kiev (1971), 141 p.

    Google Scholar 

  8. A. V. Ampilov, V. V. Ballov, E. M. Morozov, and V. P. Shcheninkov, “Determination of KIN for through cracks in cylindrical shells with the help of weight functions obtained by holographic interferometry,” Zavod. Lab., No. 2, 50 (1997).

  9. D. A. Gavrilov, V. M. Pestrikov, and A. V. Pinchuk, “A method of determination of the parameters of functions approximating results of mechanical tests,” Zavod. Lab., No. 2, 56 – 58 (1993).

    Google Scholar 

  10. E. M. Morozov, “Fracture toughness at nonroot pattern of the stress state at the tip of a crack,” Zavod. Lab., Diagn. Mater., 78(12), 65 – 66 (2012).

    Google Scholar 

  11. A. Mironov and A. Morozov, “Correlations in tensor models from character calculus,” Phys. Lett. Sec. B: Nucl. Elem. Particle High-Energy Phys., 774, 210 – 216 (2017).

    Article  CAS  Google Scholar 

  12. E. M. Morozov, “The concept of ultimate crack resistance,” Industr. Lab., 63(12), 749 – 753 (1997).

    Google Scholar 

  13. E. Morozov, A. Bulatova, and M. Zakharov, “Experimental fracture assessment diagram by ultimate crack resistance,” in: 19th Eur. Conf. on Fracture (ECF19) Fracture Mechanics for Durability, Reliability and Safety (2012).

  14. G. R. Irvin, “Analysis of stresses near a crack to the crack extension force,” J. Appl. Mech., 24(3), 361 – 364 (1957).

    Google Scholar 

  15. G. V. Klevtsov and G. B. Shvets, X-Ray Analysis as a Method for Studying Fractures [in Russian], Mashinostroenie, Leningrad (1986), Issue 36, pp. 3 – 11.

  16. Helena Jin, Wei-Yang Lu, Sandip Haldar, Hugh A. Bruck, “Microscale characterization of granular deformation near a crack tip,” J. Mater. Sci., 46(20), 6596 – 6602, Oct. (2011).

  17. Luke N. Brewer, David P. Field, and Colin C. Merriman, Mapping and Assessing Plastic Deformation Using EBSD. Electron Backscatter Diffraction in Materials Science (2009), pp. 251 – 262.

  18. O. Plekhov, A. Fedorova, A. Kostina, and I. Panteleev, “Theoretical and experimental study of strain localization and energy dissipation at fatigue crack tip,” Proc. Mater. Sci., No. 3, 1029 – 1025 (2014).

    Google Scholar 

  19. A. Iziumova and O. Plekhov, “Calculation of the energy J-integral in plastic zone ahead of a crack tip by infrared scanning,” Fatigue Fract. Eng. Mater. Struct., 37(12), 1330 – 1337 (2014).

    Article  Google Scholar 

  20. E-Wen Huang, Soo Yeol Lee, Wanchuck Woo, and Kuan-Wei Lee, Three-Orthogonal-Direction Stress Mapping around a Fatigue- Crack Tip Using Neutron Diffraction, The Minerals. Metals & Materials Society and ASM Int. (2011).

    Google Scholar 

  21. J.-Y. Buffiere, E. Ferrie, H. Proudhon, and W. Ludwig, “Three dimensional visualisation of fatigue cracks in metals using high resolution x-ray microtomography,” Mater. Sci. Technol., 22(9), 1019 – 1024 (2006).

    Article  CAS  Google Scholar 

  22. M. Herbig, A. King, P. Reischig, et al., “3-D growth of a short fatigue crack within a polycrystalline microstructure studied using combined diffraction and phase-contrast x-ray tomography,” Acta Mater., 59, 590 – 601 (2011).

    Article  CAS  Google Scholar 

  23. Hui Li, Hiroyuki Toda, Kentaro Uesugi, et al., “Application of diffraction-amalgamated grain boundary tracking to fatigue crack propagation behavior in high strength aluminum alloy,” Mater. Trans., 56(3), 424 – 428 (2015).

    Article  CAS  Google Scholar 

  24. P. J.Withers, “Fracture mechanics by three-dimensional crack-tip synchrotron x-ray microscopy,” Philos. Trans. A, 373(2036), Art. No. 20130157 (2015).

  25. T. W. Wright and G. Ravichandran, “Canonical aspects of adiabatic shear bands,” Int. J. Plasticity, 13(4), 309 – 325 (1997).

    Article  Google Scholar 

  26. A. Molinari and R. J. Clifton, “Analytical characterization of shear localization in thermoviscoplastic materials,” J. Appl. Mech., 54, 806 – 812 (1987).

    Article  Google Scholar 

  27. E. A. Lyapunova, A. N. Petrova, I. G. Brodova, et al., “A study of the laws of localization of plastic strain and formation of multiscale defect structures in the process of dynamic loading of aluminum alloy 6061,” Fiz. Mezomekh., 15, 2, 61 – 67 (2012).

    CAS  Google Scholar 

  28. C. Zener and J. H. Hollomon, “Effect of strain rate upon plastic flow of steel,” J. Appl. Phys., 15(1), 22 – 32 (1944).

    Article  Google Scholar 

  29. A. F. Belikova, S. N. Buravova, Yu. A. Gordopolov, and I. V. Saikov, “Nature of formation of bands of localized strain under dynamic loads,” Vest. TGU, 16(3), 908 – 909 (2010).

    Google Scholar 

  30. A. F. Belikova, S. N. Buravova, and Yu. A. Gordopolov, “Localization of strain and its association with the deformed state of the material,” Zh. Tekh. Fiz., 83(2), 153 – 155 (2013).

    Google Scholar 

  31. M. A. Sokovikov, Yu. V. Bayandin, E. A. Lyapunova, et al., “Localization of plastic shear and fracture mechanisms under dynamic loading of metals,” Vychisl. Mekh. Splosh. Sred, 6(4), 467 – 474 (2013).

    Google Scholar 

  32. M. A. Pukhov, V. A. Pushkov, V. A. Borisenok, et al., “A study of localization of adiabatic shear in copper of grade M1 by the Hopkinson method of compound rod,” Probl. Proch. Plast., 77(4), 379 – 384 (2015).

    Google Scholar 

  33. M. N. Georgiev, Yu. N. Simonov, and M. Yu. Simonov, “Effect of crack length and side notches on implementation of plane strain conditions under impact loading,” Zavod. Lab., Diagn. Mater., 76(9), 56 – 58 (2010).

    CAS  Google Scholar 

  34. M. N. Georgiev,M. Yu. Simonov, and Yu. N. Simonov, “Assessment of fracture energy for impact specimens with side notches,” Zavod. Lab., Diagn. Mater., 78(9), 56 – 61 (2012).

    Google Scholar 

  35. M. Yu. Simonov, Yu. N. Simonov, A. M. Khanov, and G. S. Shaimanov, “Structure, dynamic crack resistance and fracture mechanisms of quenched and tempered structural steels,” Metalloved. Term. Obrab. Met., No. 11, 32 – 39 (2012).

    Google Scholar 

  36. M. Yu. Simonov, G. S. Shaimanov, and A. S. Pertsev, “Effect of structure on the dynamic crack resistance and special features of the micromechanism of crack growth in steel 35Kh after cold radial forging,” Metal Sci. Heat Treat., 58(1), 82 – 90 (2016).

    Article  CAS  Google Scholar 

  37. M. Yu. Simonov, Yu. N. Simonov, and G. S. Shaimanov, “Structure, dynamic crack resistance and micromechanism of crack growth in tubular billets after thermal deformation treatment,” Fiz. Met. Metalloved., 119(1), 54 – 62 (2018).

    Google Scholar 

  38. M. Yu. Simonov, M. N. Georgiev, Yu. N. Simonov, and G. S. Shaimanov, “Assessment of the zone of plastic strain in high-toughness materials after dynamic tests by the method of systematic measurement of microhardness,” Metalloved. Term. Obrab. Met., No. 11, 40 – 45 (2012).

    Google Scholar 

  39. M. Yu. Simonov, G. S. Shaimanov, and Yu. N. Simonov, “Formation of zones of plastic strain in quenched and tempered steel 09G2S during dynamic tests,” Metalloved. Term. Obrab. Met., No. 12, 44 – 50 (2015).

    Google Scholar 

  40. M. Yu. Simonov, M. N. Georgiev, G. S. Shaimanov, et al., “Comparative analysis of zones of plastic strain, dynamic crack resistance and micromechanisms of crack growth of steels 09G2S, 25 and 40 in high-toughness condition,” Metalloved. Term. Obrab. Met., No. 2, 39 – 48 (2016).

    Google Scholar 

  41. M. N. Georgiev, Yu. N. Simonov, N. Ya. Mezhova, and V. N. Minaev, “Structural aspects of cyclic crack resistance of quenched and tempered steels,” Fiz.-Khim. Mekh. Mater., 21(5), 48 – 53 (1985).

    CAS  Google Scholar 

  42. M. Yu. Simonov, O. B. Naimark, Yu. N. Simonov, et al., “Structural aspects of zones of plastic strain. Part III. Effect of the thermal stability of the structure of adiabatic shear,” Metalloved. Term. Obrab. Met., No. 10, 64 – 71 (2019).

  43. M. Yu. Simonov, Yu. N. Simonov, and G. S. Shaimanov, “Structural and fractographic features of formation of splits in low-alloy steel subjected to thermal deformation treatment,” Metalloved. Term. Obrab. Met., No. 10, 5 – 15 (2019).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yu. Simonov.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 10, pp. 43 – 53, October, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simonov, M.Y., Naimark, O.B., Simonov, Y.N. et al. Structural Aspects of Zones of Plastic Strain. Part I. Effect of Adiabatic Shear. Met Sci Heat Treat 61, 628–638 (2020). https://doi.org/10.1007/s11041-020-00471-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-020-00471-x

Key words

Navigation