Skip to main content
Log in

Structural and Fractographic Features of Formation of Splits in Low-Alloy Steel Subjected to Thermal Deformation Treatment

  • 70 YEARS OF THE DEPARTMENT OF METAL SCIENCE AND HEAT AND LASER TREATMENT OF THE PERM NATIONAL RESEARCH POLYTECHNIC UNIVERSITY
  • Published:
Metal Science and Heat Treatment Aims and scope

The structure and micromechanism of crack growth in steel 09G2S are studied after heat and thermal deformation treatments involving cold radial forging (CRF) with 55% total deformation and subsequent annealing at 300 and 600°C. A method for electron microscope panoramic XYZ joining of images of a fracture surface with level difference up to 3 mm is developed and tested. The structure under a fracture surface of steel 09G2S after CRF and annealing at 300°C is studied. The positive role of bands of adiabatic shear forming in the structure under cold radial forging in dispersion of the steel is demonstrated. Special features of the micromechanism of crack growth due to formation of splits are determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. G. V. Kurdyumov, L. M. Utevskii, and R. I. Éntin, Transformations in Iron and Steel [in Russian], Nauka, Moscow (1977), 236 p.

    Google Scholar 

  2. R. Z. Valiev, A. V. Korznikov, and R. R. Milyukov, “Structure and properties of ultrafine-grained materials produced by severe plastic deformation,” Mater. Sci. Eng. A, 186, 141 – 148 (1993).

    Article  Google Scholar 

  3. T. I. Tabatchikova, I. L. Yakovleva, S. Yu. Delgado Reina, et al., “Influence of warm deformation on the formation of a fragmental structure in low-carbon martensitic steels,” Phys. Met. Metallogr., 117(1), 61 – 73 (2016).

    Article  CAS  Google Scholar 

  4. G. A. Salishchev, O. R. Valiakhmetov, R. M. Geleev, and S. P. Malysheva, “Formation of submicrocrystalline structure in titanium under plastic deformation and its effect on mechanical properties,” Metally, No. 4, 86 – 91 (1996).

    Google Scholar 

  5. A. M. Glezer and L. S. Metlov, “Megaplastic deformation of solid bodies,” Fiz. Tekh. Vysok. Davl., 18(4), 21 – 36 (2008).

    CAS  Google Scholar 

  6. Yu. N. Simonov, A. P. Nishta, S. S. Yugay, and A. S. Pertsev, “Refinement of the structure of steel 35Kh up to the nanolevel with the aim to create materials for high-pressure vessels,” Metalloved. Term. Obrab. Met., No. 11, 7 – 12 (2010).

    Google Scholar 

  7. V. M. Schastlivtsev, T. I. Tabatchikova, I. L. Yakovleva, et al., “Effect of thermomechanical treatment on the resistance of low carbon alloy steel to brittle fracture,” Phys. Met. Metallogr., 116(2), 189 – 199 (2015).

    Article  Google Scholar 

  8. M. Yu. Simonov, G. S. Shaimanov, A. S. Pertsev, et al., “Effect of structure on the dynamic crack resistance and special features of the micromechanism of crack growth in steel 35Kh after cold radial forging,” Met. Sci. Heat Treat., 58(2), 82 – 90 (2016).

    Article  CAS  Google Scholar 

  9. M. Yu. Simonov, G. S. Shaimanov, A. S. Pertsev, et al., “Dynamic crack resistance and structure of a tubular billet from steel 09G2S after thermal deformation treatment,” Metalloved. Term. Obrab. Met., No. 6, 64 – 71 (2017).

    Google Scholar 

  10. E. G. Astafurova, S. V. Dobatkin, E. V. Naidenkin, et al., “Structural and phase transformations in nanostructured steel 10G2FT during cold torsional deformation under pressure and subsequent heating,” Ross. Nanotekhnol., 4(1 – 2), 162 – 174 (2009).

  11. M. V. Chukin, N. V. Koptseva, R. Z. Valiev, et al., “Diffraction electron-microscope analysis of submicrocrystalline and nanocrystalline structure of structural carbon steels after equal channel angular pressing and subsequent deformation,” Vest. MGTU Im. G. I. Nosova, No. 1, 31 – 37 (2008).

    Google Scholar 

  12. R. Z. Valiev, “Creation of nanostructured metals and alloys with unique properties using severe plastic deformations,” Ross. Nanotekhnol., 1(1 – 2), 208 – 216 (2006).

  13. O. B. Naimark, “Collective properties of ensembles of defects and some nonlinear problems of plasticity and fracture,” Fiz. Mesomekhan., 6(4), 45 – 72 (2003).

    Google Scholar 

  14. V. E. Panin, Yu. V. Grinyaev, V. I. Danilov, et al., Structural Levels of Plastic Deformation and Fracture [in Russian], Novosibirsk, Nauka (1990), 225 p.

    Google Scholar 

  15. V. V. Rybin, High Plastic Deformations and Fracture of Metals [in Russian], Metallurgiya, Moscow (1986), 224 p.

    Google Scholar 

  16. O. B. Naimark and M. A. Sokovnikov, “On the mechanism of adiabatic shear under high-speed loading of materials,” Matem. Model. Sist. Prots., No. 3, 71 – 76 (1995).

    Google Scholar 

  17. C. Froustey, O. B. Naimark, I. A. Panteleev, et al., “Multiscale structural relaxation and adiabatic shear failure mechanisms,” Phys. Mesomechan., 20(1), 31 – 42 (2017).

    Article  Google Scholar 

  18. D. Rittel, Z. G. Wang, and M. Merzer, “Adiabatic shear failure and dynamic stored energy of cold work,” Phys. Rev. Lett., No. 96, 075502 (1 – 4) (2006).

  19. T. W. Wright, The Physics and Mathematics of Adiabatic Shear Bands, University Press, Cambridge (2002), p. 240.

    Google Scholar 

  20. A. F. Belikova, S. N. Buravova, Yu. A. Gordopolov, and I. V. Saikov, “Nature of formation of bands of localized strain under dynamic loads,” Vest. TGU, 16(3), 908 – 909 (2010).

    Google Scholar 

  21. A. F. Belikova, S. N. Buravova, and Yu. A. Gordopolov, “Localized strain and its relation to the deformed condition of the material,” Zh. Tekh. Fiz., 83(2), 153 – 155 (2013).

    Google Scholar 

  22. D. Rittel, Z. G. Wang, and M. Merzer, “Adiabatic shear failure and dynamic stored energy of cold work,” Phys. Rev. Lett., No. 96, 075502 (1 – 4) (2006).

  23. M. Yu. Simonov, A. S. Pertsev, G. S. Shaimanov, and Yu. N. Simonov, “Cold resistance of structural steel subjected to cold radial forging,” Metalloved. Term. Obrab. Met., No. 10, 15 – 25 (2019).

    Google Scholar 

  24. G. V. Klevtsov, R. Z. Valiev, N. A. Klevtsova, et al., “Strength and mechanisms of fracture of nanostructured metallic materials under single loading,” Metalloved. Term. Obrab. Met., No. 9, 54 – 62 (2017).

    Google Scholar 

  25. V. A. Tyurin, V. A. Lazorkin, I. A. Pospelov, et al., Forging in Radial Swaging Machines [in Russian], Mashinostroenie, Moscow (1990), 256 p.

    Google Scholar 

  26. A. A. Shanyavskii, “Rotary instability of deformation and fracture of metals under propagation of fatigue cracks at mesoscopic and scale level. I. Processes of plastic deformation at the tip of the crack,” Fiz. Mesomekhan., 4(1), 73 – 80 (2001).

    CAS  Google Scholar 

  27. D. O. Panov, A. N. Balakhnin, A. S. Pertsev, et al., “Refinement of quenched low-carbon steel under cold plastic deformation and subsequent intense heat treatment,” Izv. Vysh. Uchebn. Zaved., Chern. Metall., No. 9, 75 – 61 (2013).

  28. M. Yu. Simonov, O. B. Neimark, Yu. N. Simonov, et al., “Structural aspects of zones of plastic strain. Part I. Effect of adiabatic shear,” Metalloved. Term. Obrab. Met., No. 10, 43 – 53 (2019).

  29. M. Yu. Simonov, Yu. N. Simonov, O. B. Neimark, et al., “Structural aspects of zones of plastic strain. Part III. Effect of thermal stability of adiabatic shear bands,” Metalloved. Term. Obrab. Met., No. 10, 64 – 76 (2019).

  30. M. Yu. Simonov, “Structural aspects of zones of plastic strain. Part II. Effect of mass transfer,” Metalloved. Term. Obrab. Met., No. 10, 54 – 63 (2019).

  31. M. Yu. Simonov, M. N. Georgiev, G. S. Shaimanov, et al., “Comparative analysis of zones of plastic strain, dynamic crack resistance, structure and micromechanisms of crack growth in steels 09G2S, 25 and 40 in high-toughness condition,” Metalloved. Term. Obrab. Met., No. 2, 39 – 48 (2016).

    Google Scholar 

  32. M. Yu. Simonov, Yu. N. Simonov, and G. S. Shaimanov, “Structure, dynamic crack resistance and micromechanism of crack growth in tubular billets after thermal deformation treatment,” Fiz. Met. Metalloved., 119(1), 54 – 62 (2008).

    Google Scholar 

  33. G. S. Shaimanov, M. Yu. Simonov, Yu. N. Simonov, and A. S. Pertsev, “Special features of fracture surface of steel 09G2S after cold radial forging,” Vest. PNIPU, Mashinostr., Materialoved., 18(3), 119 – 134 (2016).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yu. Simonov.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 10, pp. 50 – 15, October, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simonov, M.Y., Simonov, Y.N. & Shaimanov, G.S. Structural and Fractographic Features of Formation of Splits in Low-Alloy Steel Subjected to Thermal Deformation Treatment. Met Sci Heat Treat 61, 591–600 (2020). https://doi.org/10.1007/s11041-020-00466-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-020-00466-8

Key words

Navigation