Skip to main content
Log in

Novel Method for Refining Coarse Eutectic Carbides in Ultrahigh-Carbon Steel

  • Published:
Metal Science and Heat Treatment Aims and scope

The structure and mechanical properties of an ultrahigh-carbon steel modified with amorphous ferrosilicon with a low melting point are studied. The methods of x-ray diffraction, optical and scanning electron microscopy are used to study the effect of the amorphous modifier on the structure of eutectic ledeburite in the cast steel. Tests for tensile strength and impact toughness are conducted. It is shown that the mechanical properties increase as a result of the modification without subsequent heat treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. O. D. Sherby, B. Walser, and C. M. Young, “Superplastic ultra- high carbon steels,” Scr. Metall., 9, 569 – 573 (1975).

    Article  CAS  Google Scholar 

  2. H. Sunada, J. Wadsworth, and J. Lin, “Mechanical properties and microstructure of heat-treated ultrahigh carbon steels,” Mater. Sci. Eng., 38, 35 (1979).

    Article  CAS  Google Scholar 

  3. D. R. Lesuer, C. K. Syn, and A. Goldberg, “The case for ultrahigh- carbon steels as structural materials, JOM, 45, 40 – 46 (1993).

  4. C. K. Syn, D. R. Lesuer, and O. D. Sherby, “Influence of microstructure on tensile properties of spheroidized ultrahigh-carbon steel,” Mater. Sci. Eng. A, 25, 1481 – 1493 (1994).

    Google Scholar 

  5. J. C. Zhang, Y. J. Lin, and M. Hillert, “Microstructure and mechanical properties of spray formed ultrahigh-carbon steels,” Mater. Sci. Eng. A, 383, 45 – 49 (2004).

    Article  Google Scholar 

  6. S. Szczepanik, P. Nikiel, and S. C. Mitchell, “Microstructure evolution in warm forged sintered ultrahigh carbon steel,” Arch. Civ. Mech. Eng., 15, 301 – 307 (2015).

    Article  Google Scholar 

  7. T. Oyama, O. D. Sherby, and J. Wadsworth, “Application of the divorced eutectoid transformation to the development of fine-grained, spheroidized structures in ultrahigh carbon steels,” Scr. Metall., 18, 799 – 804 (1984).

    Article  CAS  Google Scholar 

  8. Y. Chen, S. Shi, and J. Sun, “Influence of spheroidization process on microstructure and mechanical properties of ultrahigh carbon steel Fe – 1.3C – 1.5Cr – 1.5Al,” Mater. Sci. Eng. (2015).

  9. M. Hull, “Spray forming poised to enter mainstream,” Powder Metall., 40, 23 – 26 (1977).

    Google Scholar 

  10. W. J. Kim, E. M. Taleff, and O. D. Sherby, “Superplasticity of fine-grained Fe – C alloys prepared by ingot- and powder processing routes,” J. Mater. Sci., 33, 4977 – 4985 (1988).

    Article  Google Scholar 

  11. R. Q. Brooks, C. Moore, and A. G. Leatham, “The Osprey process,” Powder Metall., 2, 100 – 102 (1977).

    Article  Google Scholar 

  12. E. M. Taleff, C. K. Syn, and D. R. Lesuer, “Pearlite in ultrahigh carbon steels: Heat treatments and mechanical properties,” Metall. Mater. Trans. A, 27, 111 (1995).

    Article  Google Scholar 

  13. J. Wang, H. S. Shi, and J. G. Zhang, “High-stain-rate superplasticity of big grains in spray forming ultrahigh carbon steel containing 1.6 wt.% Al,” Adv. Mater. Res., 535 – 537, 639 – 642, (2012).

  14. F. Z. Pan, H. Yang, and J. L. Jiao, “Effect of K/Na-RE multiple modification on structure and mechanical property of highspeed steel used for roll collar,” Foundry, 55, 164 (2006).

    CAS  Google Scholar 

  15. K. P. Liu, X. L. Dun, and J. P. Lai, “Effects of modification on microstructure and properties of ultrahigh carbon (1.9 wt.% C) steel,” Mater. Sci. Eng. A, 528, 8263 – 8268 (2011).

    Article  CAS  Google Scholar 

  16. S. C. Liu, S. S. Dong, and F. Yang, “Application of quenching- partitioning-tempering process and modification to a newly designed ultrahigh carbon steel,” Mater. Des., 56, 37 – 43 (2014).

    Article  CAS  Google Scholar 

  17. J. M. Wang, H. Zhu, and S. Yang, “Effects of rare earth modification on structures and properties of low-alloy cast steel,” Foundry, 2, 57 – 64 (2007).

    Google Scholar 

  18. Q. F. Guan, J. R. Fang, and Q. C. Liang, “Effect of rare earth composite modification on microstructure and properties of a new cast hot-work die steel,” J. Rare Earths, 21, 368 – 371 (2003).

    Google Scholar 

  19. L. Lei, H. Bin, and L. Sheng-gen, “Effect of Mo on mechanical properties of modified ultrahigh carbon steels after heat treatment,” J. Cent. South. Univ., 21, 1683 – 1688 (2014).

    Article  Google Scholar 

  20. H. Dadkhah, “Microstructure of cast ultrahigh carbon steel (UHCS) modified via Fe – Si – Mg – Ca – RE,” Trans. Inst. Min. Met., 67, 1001 – 1004 (2014).

    Article  CAS  Google Scholar 

  21. H. Liu, X. H. Kong, and Y. H. Sun, “Dynamic continuous cooling transformation of supercooled austenite in spring steel 55SiCrA,” Trans. Mat. Heat Treat., 32, 73 – 77 (2011).

    Google Scholar 

  22. Q. S. Liu, M. J. Zhao, and H. X. Zhang, “The novel technique of grain refinement in the aluminum-free ultrahigh carbon steel,” Steel Res. Int., 1444 – 1449 (2016).

  23. C. X. Hong, S. Q. Wang, and W. U. Hong, “Granulation of eutectic carbide through heat-treatment in modified ledeburite steel,” J. Jilin Univ. Technol., 32, 42 – 46 (2002).

    Google Scholar 

Download references

The work has been supported by research project No. 15JCTPJC64600 “Tianjin Science and Technology Support Project of China” and by the National Natural Science Foundation of China (No. 51601126).

Author information

Authors and Affiliations

Authors

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 9, pp. 18 – 21, September, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Wang, F., Zhang, X. et al. Novel Method for Refining Coarse Eutectic Carbides in Ultrahigh-Carbon Steel. Met Sci Heat Treat 61, 543–546 (2020). https://doi.org/10.1007/s11041-020-00458-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-020-00458-8

Key words

Navigation