Skip to main content
Log in

Effect of Crystal Lattice Parameters of Surface Gas-Saturated Layers on Ductility of Titanium Alloys Under Tensile Tests

  • Published:
Metal Science and Heat Treatment Aims and scope

A Correction to this article was published on 01 January 2020

This article has been updated

Sheets from titanium alloys VT18U and Ti6Al7Nb are studied after isothermal annealing at 560°C for 1000 h in an air atmosphere. Tensile tests of the specimens are performed. The elongation of the samples of VT18U and Ti6Al7Nb is shown to differ substantially in oxidized condition. Metallographic, fractographic and x-ray diffraction analyses are performed for determining the main parameters affecting the ductility of the alloys in oxidized condition. The effect of the surface gas-saturated layer on the mechanical properties of the alloys is studied, and the factors influencing the ductility of the oxidized samples in tensile tests are determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

Change history

  • 19 March 2020

    The author affiliations should read

References

  1. O. P. Solonina and S. G. Glazunov, Titanium Alloys. Refractory Titanium Alloys [in Russian], Metallurgiya, Moscow (1976), 448 p.

  2. N. M. Pul’tsyn, Interaction between Titanium and Gases [in Russian], Metallurgiya, Moscow (1969), 216 p.

    Google Scholar 

  3. E. M. Lazarev, Z. I. Kornilova, and N. M. Fedorchuk, Oxidation of Titanium Alloys [in Russian], Nauka, Moscow (1985).

    Google Scholar 

  4. H. Garbacz and M. Lewandowska, “Microstructural changes during oxidation of titanium alloys,” Mater. Chem. Phys., 81, 542 – 547 (2003).

    Article  CAS  Google Scholar 

  5. K. S. McReynolds and S. Tamirisakandala, “Study of alpha-case depth in Ti – 6Al – 2Sn – 4Zr – 2Mo,” Metall. Mater. Trans. A, 42, 1732 – 1736 (2011).

    Article  CAS  Google Scholar 

  6. R. Gaddam, B. Sefer, R. Pederson, and M.-L. Antti, “Oxidation and alpha-case formation in Ti – 6Al – 2Sn – 4Zr – 2Mo alloy,” Mater. Charact., 99, 166 – 174 (2015).

    Article  CAS  Google Scholar 

  7. P. Samimi, I. Ghamarian, D. Brice, et al., “Collins on the influence of compositional variations on the oxidation performance and oxygen-induced phase transformations in Ti-based systems,” in: Proc. 13th World Conf. on Titanium, The Minerals, Metals & Materials Society, San Diego (2015), pp. 1521 – 1526.

  8. M. S. Kalienko, A. V. Volkov, and A. V. Zhelnina, “A study of gas-saturated layer in titanium alloys after isothermal annealing,” Zavod. Lab., Diagn. Mater., 84(3), 32 – 35 (2018).

    Article  CAS  Google Scholar 

  9. P. J. Bania, “Next generation titanium alloys for elevated temperature service,” ISIJ Int., 31(8), 840 – 847 (1991).

    Article  CAS  Google Scholar 

  10. B. Geary, V. J. Bolam, S. L. Jenkins, and d. P. Davies, “High temperature titanium sheet for helicopter exhaust applications,” in: Titanium’1995: Science and Technology, Proc. 8th World Conf. on Titanium, Birmingham (1995), pp. 1638 – 1645.

  11. H. Fukai, H. IIzumi, K. Minakowa, and C. Ouchi, “The effect of the oxygen-enriched surface layer on mechanical properties of α + β type titanium alloys,” ISIJ Int., 45(1), 133 – 141 (2005).

    Article  CAS  Google Scholar 

  12. R. A. Chan, M. Koike, B.W. Johnson, and T. Okabe, “Modeling of alpha-case formation and its effect on the mechanical properties of titanium alloy castings,” Metall. Mater. Trans. A, 39, 171 – 180 (2008).

    Article  Google Scholar 

  13. A. L. Pilchak, W. J. Porter, and R. John, “Room temperature fracture processes of a near-α titanium alloy following elevated temperature exposure,” J. Mater. Sci., 47, 7235 – 7253 (2012).

    Article  CAS  Google Scholar 

  14. R. Gaddam, M.-L. Antti, and R. Pederson, “Influence of alpha-case layer on the low cycle fatigue properties of Ti – 6Al – 2Sn – 4Zr – 2Mo alloy,” Mater. Sci. Eng. A, 599, 51 – 56 (2014).

    Article  CAS  Google Scholar 

  15. P. Kwasniak, M. Musyk, H. Garbacz, and K. J. Kurzydlowski, “Influence of oxygen content on the mechanical properties of hexagonal Ti — First principles calculation,” Mater. Sci. Eng. A, 590, 74 – 79 (2014).

    Article  CAS  Google Scholar 

  16. P. Davies, et al., “The effect of elevated temperature exposure on the mechanical properties of Ti834,” in: Proc. 13th World Conf. on Titanium, The Minerals, Metals & Materials Society, San Diego (2015), pp. 1625 – 1630.

  17. Jean Bailleux, Claude Archambeau, Philipe Emile, and Dominique Poquillon, “Effect of the oxygen diffusion on the mechanical behavior of Ti – 6Al – 2Sn – 4Zr – 2Mo – 0.1Si alloy,” in: Proc. 13th World Conf. on Titanium, The Minerals, Metals & Materials Society, San Diego (2015), pp. 1613 – 1618.

  18. R. N. Shenoy, J. Unnam, and R. K. Clark, “Oxidation and embrittlement of Ti – 6Al – 2Sn – 4Zr – 2Mo alloy,” Oxidation Met., 26(1/2), 105 – 123 (1986).

    Article  CAS  Google Scholar 

  19. I. Gurrappa, “An oxidation model for predicting the life of titanium alloy components in gas turbine engines,” J. Alloys Compd., 389, 190 – 197 (2005).

    Article  CAS  Google Scholar 

  20. T. A. Parthasarathy, W. J. Porter, S. Boone, et al., “Life prediction under tension of titanium alloys that develop an oxygenated brittle case during use,” Scr. Mater., 65, 420 – 423 (2011).

    Article  CAS  Google Scholar 

  21. R. A. Brockman, A. L. Pilchak,W. J. Porter, and R. John, “Estimation of grain boundary diffusivity in near-α titanium polycrystals,” Scr. Mater., 65, 513 – 515 (2011).

    Article  CAS  Google Scholar 

  22. J. Tiley, J. Shaffer, A. Shiveley, et al., “The effect of lath orientations on oxygen ingress in titanium alloys,” Metall. Mater. Trans. A, 45, 1041 – 1048 (2014).

    Article  CAS  Google Scholar 

  23. D. P. Satko, et al., “Effect of microstructure on oxygen rich layer evolution and its impaction fatigue life during high-temperature application of α/β titanium,” Acta Mater., 107, 377 – 389 (2016).

    Article  CAS  Google Scholar 

  24. T. Kitashima and T. Kawamura, “Prediction of oxidation behavior of near-α titanium alloys,” Scr. Mater., 124, 56 – 58 (2016).

    Article  CAS  Google Scholar 

  25. M. S. Kalienko, M. O. Leder, A. V. Volkov, et al., “A study of mechanical properties and structure of sheets from titanium alloys VT88, VT18U and VT25U in heat-hardened condition,” Tekhnol. Legk. Splavov, No. 4, 37 – 41 (2017).

  26. A. A. Il’in, B. A. Kolachev, and I. S. Pol’kin, Titanium Alloys. Composition, Structure, Properties [in Russian], VILS – MATI, Moscow (2009), 520 p.

    Google Scholar 

  27. ISO 26146:2012, Method of Metallographic Study of Samples after the Impact of High-Temperature Corrosive Environments, ISO, Geneva (2012), 11 p.

  28. W. Sha and S. Malinov, Titanium Alloys: Modelling of Microstructure, Properties and Applications, Woodhead Publ. Limited (2009), 569 p.

  29. K. E. Wiedemann, R. N. Shenoy, and J. Unnam, “Microhardness and lattice parameter calibrations of the oxygen solid solutions of unalloyed e-titanium and Ti – 6Al – 2Sn – 4Zr – 2Mo,” Metall. Trans. A, 18A, 1503 – 1510 (1987).

    Article  CAS  Google Scholar 

  30. A. K. Swarnakar, O. Van der Biest, and B. Baufeld, “Thermal expansion and lattice parameters of shaped metal deposited Ti – 6Al – 3V,” J. Alloys Compd., 509, 2723 – 2728 (2011).

    Article  CAS  Google Scholar 

  31. J.-M. Oh, et al., “Oxygen effects on the mechanical properties and lattice strain of Ti and Ti – 6Al – 4V,” Met. Mater. Int., 17(5), 733 – 736 (2011).

    Article  CAS  Google Scholar 

  32. B. Barkia, V. Doquet, J. P. Couzinie, et al., “In situ monitoring of the deformation mechanisms in titanium with different oxygen contents,” Mater. Sci. Eng., 636, 91 – 102 (2015).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Kalienko.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 8, pp. 30 – 34, August, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalienko, M.S., Volkov, A.V., Zhelnina, A.V. et al. Effect of Crystal Lattice Parameters of Surface Gas-Saturated Layers on Ductility of Titanium Alloys Under Tensile Tests. Met Sci Heat Treat 61, 489–494 (2019). https://doi.org/10.1007/s11041-019-00451-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-019-00451-w

Key words

Navigation