Skip to main content
Log in

Effect of Heat Treatment on Microstructure and Mechanical Properties of Alloy Mg – 10% Gd – 3% Y – 0.6% Zr

  • Published:
Metal Science and Heat Treatment Aims and scope

The microstructure, mechanical properties and fracture behavior of magnesium alloy Mg – 10% Gd – 3% Y – 0.6% Zr is studied in cast condition and after T4 and T6 treatments. It is shown that in cast condition the alloy contains an α-phase (a magnesium-base solid solution) and a Mg24(Gd, Y)5 eutectic phase. After the solution treatment the eutectic phase dissolves in the α-matrix containing cuboid particles of a phase enriched with gadolinium and yttrium. The hardness and the tensile strength criteria are used to determine the optimum treatment for the cast alloy, i.e., 8-h solution treatment at 500°C and 16-h aging at 220°C (T6). This mode of heat treatment provides the best mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

Notes

  1. Here and below in the paper the content of the elements is given in weight percent.

References

  1. W. C. Liu, L. K. Jiang, L. Cao, et al., “Fatigue behavior and plain-strain fracture toughness of sand-cast Mg – 10Gd – 3Y – 0.5Zr magnesium alloy,” Mater. Des., 59, 466 – 474 (2014).

    Article  CAS  Google Scholar 

  2. L. Zheng, C. M. Liu, Y. C. Wan, et al., “Microstructures and mechanical properties of Mg – 10Gd – 6Y– 2Zn – 0.6Zr (wt.%) alloy,” J. Alloys Compd., 509, 8832 – 8839 (2011).

    Article  CAS  Google Scholar 

  3. C. Xu, M. Y. Zheng, S. W. Xu, et al., “Ultra high-strength Mg – Gd – Y – Zn – Zr alloy sheets processed by large-strain hot rolling and ageing,” Mater. Sci. Eng. A, 547, 93 – 98 (2012).

    Article  CAS  Google Scholar 

  4. A. A. Luo, “Recent magnesium alloy development for elevated temperature applications,” J. Mater. Sci., 1, 2 – 22 (2013).

    CAS  Google Scholar 

  5. A. Luo, “Cast magnesium alloys for elevated temperature applications,” J. Mater. Sci., 49, 13 – 30 (2004).

    CAS  Google Scholar 

  6. C. Suman, SAE Technical Paper 910416, Soc. Automotive Engineers, Warrendale, PA (1991).

  7. J. Wang, J. Meng, D. P. Zhang, and D. X. Tang, “Effect of Y for enhanced age hardening response and mechanical properties of Mg – Ho – Y – Zr alloys,” Mater. Sci. Eng. A, 456, 78 – 84 (2007).

    Article  Google Scholar 

  8. H. R. Jafari Nodooshan, W. C. Liu, G. H. Wu, et al., “Microstructure characterization and high-temperature shear strength of the Mg – 10D – 3Y – 1.2Zn – 0.5Zr alloy in the as-cast and aged conditions,” J. Alloys Compd., 619, 826 – 833 (2015).

    Article  CAS  Google Scholar 

  9. S. M. He, X. Q. Zeng, L. M. Peng, et al., J. Alloys Compd., 421, 309 – 313 (2006).

    Article  CAS  Google Scholar 

  10. S. M. He, X. Q. Zeng, L. M. Peng, et al., “Precipitation in a Mg – 10Gd – 3Y – 0.4Zr (wt.%) alloy during isothermal ageing at 250°C,” J. Alloys Compd., 427, 316 – 323 (2007).

    Article  CAS  Google Scholar 

  11. M. Sun, G. H. Wu, W. Wang, and W. J. Ding, “Effect of Zr on the microstructure, mechanical properties and corrosion resistance of Mg – 10Gd – 3Y magnesium alloy,” Mater. Sci. Eng. A., 523, 145 – 151 (2009).

    Article  Google Scholar 

  12. J. W. Chang, X. W. Guo, S. M. He, et al., “Investigation of the corrosion for Mg – xGd – 3Y – 0.4Zr (x = 6, 8, 10, 12 wt.%) alloys in a peak-aged condition,” Corros. Sci., 50, 166 – 177 (2008).

    Article  CAS  Google Scholar 

  13. H. R. Jafari Nodooshan, W. C. Liu, G. H. Wu, et al., “Effect of Gd content on microstructure and mechanical properties of Mg – Gd – Y – Zr alloys under peak-aged condition,” Mater. Sci. Eng. A, 615, 79 – 86 (2014).

    Article  Google Scholar 

  14. L. Huo, Z. Q. Han, and B. C. Liu, “Effect of microstructure on tensile and fatigue properties of cast Mg – 10Gd – 2Y – 0.5Zr alloy,” Int. J. Cast Met. Res., 22, 123 – 126 (2009).

    Article  CAS  Google Scholar 

  15. T. Honma, T. Ohkubo, K. Hono, and S. Kamado, “Chemistry of nanoscale precipitates in Mg – 2.1Gd – 0.6Y – 0.2Zr (at.%) alloy investigated by the atom probe technique,” Mater. Sci. Eng. A, 395, 301 – 306 (2005).

    Article  Google Scholar 

  16. F. Yang, F. Lv, X.M. Yang, et al., “Enhanced very high cycle fatigue performance of extruded Mg – 12Gd – 3Y – 0.5Zr magnesium alloy,” Mater. Sci. Eng. A, 528, 2231 – 2238 (2011).

    Article  Google Scholar 

Download references

The work has been supported by the Project of International Cooperation of the Ministry of Science and Technology of China (No. 2014DFA50320), the National Foundation for Natural Sciences of China (No. 51674226, 51574207, 51574206, 51204147, 51274175), the Project on International Technological Cooperation of the Shanxi Province (No. 2015081041), and the Project on Science and Technology of the Shanxi Province (No. 2015031012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Hou.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 7, pp. 37 – 43, July, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, Zb., Lu, Rp., Hou, H. et al. Effect of Heat Treatment on Microstructure and Mechanical Properties of Alloy Mg – 10% Gd – 3% Y – 0.6% Zr. Met Sci Heat Treat 61, 434–439 (2019). https://doi.org/10.1007/s11041-019-00441-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-019-00441-y

Key words

Navigation