Skip to main content
Log in

Experimental Search for Chemical Compositions of Superelastic Titanium Alloys with Enhanced Functional Properties

  • TITANIUM ALLOYS
  • Published:
Metal Science and Heat Treatment Aims and scope

Ti – Zr-based alloys with a high zirconium content prepared by vacuum-arc remelting with nonconsumable tungsten electrode are studied. The optimum number of remelting operations and melting conditions in order to achieve a highly uniform distribution of components and low content of impurities in the alloy are determined. Optimum thermomechanical treatment (cold rolling) and post-deformation annealing regimes are proposed. X-ray studies are conducted at room temperature and after thorough cooling in order to determine the crystallographic resource of alloy reversible deformability. Alloy susceptibility towards superelastic behavior at room temperature, cyclic endurance and its dependence on annealing atmosphere are evaluated in the course of tension-compression mechanical tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

Notes

  1. Here and throughout the text, apart from stipulated cases, alloy chemical composition is provided in at.%.

References

  1. D. Carter, W. Caler, D. Spengler, and V. Frankel, “Fatigue behavior of adult cortical bone: the influence of mean strain and strain range,” Acta Orthop., 52(5), 481 – 490 (1981).

    Article  CAS  Google Scholar 

  2. S. Shabalovskaya, “On the nature of the biocompatibility and on the medical applications of NiTi shape memory alloys,” Bio-Med. Mater. Eng., 6(4), 267 – 289 (1996).

    Article  CAS  Google Scholar 

  3. V. Brailovski, S. Prokoshkin, K. Inaekyan, and V. Demers, “Functional properties of nanocrystalline, submicrocrystalline and polygonized Ti – Ni alloys processed by cold rolling and post deformation annealing,” J. Alloys Compd., 509(5), 2066 – 2075 (2011).

    Article  CAS  Google Scholar 

  4. I. Khmelevskaya, I. Trubitsyna, S. Prokoshkin, et al., “Thermomechanical treatment of Ti – Ni-based shape memory alloys using severe plastic deformation,” Mater. Sci. Forum, 426 – 432(3), 2765 – 2770 (2003).

    Article  CAS  Google Scholar 

  5. S. Prokoshkin, V. Brailovski, K. Inaekyan, et al., “Thermomechanical treatment of TiNi intermetallic-based shape memory alloys,” in: N. Resnina and V. Rubanik (eds.), Shape Memory Alloys: Properties, Technologies, Opportunities, Trans Tech Publ., Pfaffikon, Switzerland (2015).

    Google Scholar 

  6. J. Kim, H. Kim, T. Inamura, et al., “Shape memory characteristics of Ti – 22 Nb – (2 – 8) Zr (at.%) biomedical alloys,” Mater. Sci. Eng. A, 403(1 – 2), 334 – 339 (2005).

    Article  Google Scholar 

  7. H. Kim, T. Sasaki, K. Okutsu, et al., “Texture and shape memory behavior of Ti – 22Nb – 6Ta alloy,” Acta Mater., 54(2), 423 – 433 (2006).

    Article  CAS  Google Scholar 

  8. P. Buenconsejo, H. Kim, H. Hosoda, and S. Miyazaki, “Shape memory behavior of Ti – Ta and its potential as a high-temperature shape memory alloy,” Acta Mater., 57(4), 1068 – 1077 (2009).

    Article  CAS  Google Scholar 

  9. J. Fu, H. Kim, and S. Miyazaki, “Effect of annealing temperature on microstructure and superelastic properties of a Ti – 18Zr– 4.5Nb – 3Sn – 2Mo alloy,” J. Mech. Behav. Biomed., 65(1), 716 – 723 (2017).

    Article  CAS  Google Scholar 

  10. H. Hosoda, N. Hosoda, and S. Miyazaki, “Development and characterization of Ni-free Ti-base shape memory and superelastic alloys,” Trans. Mat. Res. Soc. J., 26, 243 – 246 (2001).

    CAS  Google Scholar 

  11. T. Ahmed and H. Rack, “Martensitic transformations in Ti – (16 – 26) at.% Nb alloys,” J. Mater. Sci., 31, 4267 – 4276 (1996).

    Article  CAS  Google Scholar 

  12. H. Kim, H. Satoru, J. Kim, et al., “Mechanical properties and shape memory behavior of Ti – Nb alloys,” Mat. Trans., 45, 2443 – 2448 (2004).

    Article  CAS  Google Scholar 

  13. V. Sheremetyev, V. Brailovski, S. Prokoshkin, et al., “Functional fatigue behavior of superelastic beta Ti – 22Nb – 6Zr (at.%) alloy for load-bearing biomedical applications,” Mater. Sci. Eng., 58, 935 – 944 (2016).

    Article  CAS  Google Scholar 

  14. V. Brailovski, S. Prokoshkin, M. Gauthier, et al., “Bulk and porous metastable beta Ti – Nb – Zr(Ta) alloys for biomedical applications,” Mat. Sci. Eng., 31(3), 543 – 657 (2011).

    Google Scholar 

  15. H. Kim, J. Fu, H. Tobe, et al., “Crystal structure, transformation strain, and superelastic property of Ti – Nb – Zr and Ti – Nb –Ta alloys,” Shape Memory Superelasticity, 1, 107 – 116 (2015).

    Article  Google Scholar 

  16. A. Konopatsky, S. Dubinskiy, Y. Zhukova, et al., “Ternary Ti –Zr – Nb and quaternary Ti – Zr – Nb – Ta shape memory alloys for biomedical applications: Structural features and cyclic mechanical properties,” Mat. Sci. Eng., A702, 301 – 311 (2017).

    Article  Google Scholar 

Download references

Work was carried out with financial support of the Federal Target program (measure 1.2 “Development of technology for creating intrabone implants with a biopolymer coating based on superelastic titanium alloys,” unique identifier RFMEF167517XO158).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Konopatskii.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 6, pp. 3 – 9, June, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konopatskii, A.S., Dubinskii, S.M., Zhukova, Y.S. et al. Experimental Search for Chemical Compositions of Superelastic Titanium Alloys with Enhanced Functional Properties. Met Sci Heat Treat 61, 333–339 (2019). https://doi.org/10.1007/s11041-019-00426-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-019-00426-x

Key words

Navigation