Skip to main content
Log in

Microstructure and Wear of a Sintered Composite with a Magnesium Alloy AZ91 Matrix Reinforced with ZrO2 Particles

  • Published:
Metal Science and Heat Treatment Aims and scope

Scanning electron microscopy and x-ray diffractometry are used to study the microstructure, hardness, density and the wear resistance of sintered composites with a magnesium alloy AZ91 matrix reinforced with ZrO2 particles prepared using hot pressing. It is shown that ZrO2 particles are agglomerated in any condition. In addition to zirconia, the structure contains Mg and Mg17Al12. Particles of ZrO2facilitate an increase in hardness and whose oxidation and abrasive mechanisms predominate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

References

  1. M. Gupta and N. M. L. Sharon, Magnesium, Magnesium Alloys and Magnesium Composites, Wiley, New Jersey (2011).

    Google Scholar 

  2. K. K. Deng, X. J. Wang, Y. W. Wu, et al., “Effect of particle size on microstructure and mechanical properties of SiCp/AZ91 magnesium matrix composite,” Mater. Sci. Eng. A, 543, 158 – 163. (2012).

    Article  CAS  Google Scholar 

  3. K. Deng, J. Shi, C. Wang, et al., “Microstructure and strengthening mechanism of bimodal size particle reinforced magnesium matrix composite,” Composites: Part A, 43(8), 1280 – 1284 (2012).

    Article  CAS  Google Scholar 

  4. Q. C. Jiang, X. L. Li, and H. Y. Wang, “Fabrication of TiC particulate reinforced magnesium matrix composites,” Scr. Mater., No. 48, 713 – 717 (2003).

    Article  CAS  Google Scholar 

  5. M. E. Turan, Y. Sun, Y. Akgul, et al., “The effect of GNPs on wear and corrosion behaviors of pure magnesium,” J. Alloys Comp., 724, 14 – 23 (2017).

    Article  CAS  Google Scholar 

  6. M. Y. Zheng, K. Wu, S. Kamado, and Y. Kojima, “Aging behavior of squeeze cast SiCw/AZ91 magnesium matrix composite,” Mater. Sci. Eng. A, 348(1 – 2), 67 – 75 (2003).

    Article  Google Scholar 

  7. P. Seenuvasaperumal, A. Elayaperumal, and R. Jayavel, “Influence of calcium hexaboride reinforced magnesium composite for the mechanical and tribological behavior,” Tribology Int., 111, 18 – 25 (2017).

    Article  CAS  Google Scholar 

  8. K. D. Sameer, K. N. S. Suman, S. C. Tara, et al., “Microstructure, mechanical response and fractography of AZ91e/Al2O3 (p) nano composite fabricated by semi solid stir casting method,” J. Magnes. and Alloys, No. 5, 48 – 55 (2017).

    Article  Google Scholar 

  9. Q. H. Yuan, X. S. Zeng, Y. Liu, et al., “Microstructure and mechanical properties of AZ91 alloy reinforced by carbon nanotubes coated with MgO,” Carbon, 96, 843 – 855 (2016).

    Article  CAS  Google Scholar 

  10. H. Y. Wang, Q. C. Jiang, Y. Wang, et al., “Fabrication of TiB2 particulate reinforced magnesium matrix composites by powder metallurgy,” Mater. Lett., 58, 3509 – 3513 (2004).

    Article  CAS  Google Scholar 

  11. A. A. Kaya, E. S. Kayali, D. Eliezer, et al., “Addition of B4C to AZ91 via diecasting and its effect on wear behavior,” Mater. Sci. Forum, 488 – 489, 741 – 744 (2005).

    Article  Google Scholar 

  12. A. Fathy, O. Elkady, and A. A. Oqail, “Microstructure, mechanical and wear properties of Cu – ZrO2 nanocomposites,” Mater. Sci. Techn., 1 – 9 (2017).

  13. S. F. Hassan, “Mg – ZrO2 nanocomposite: relative effect of reinforcement incorporation technique,” Arch. Metall. Mater., 61(3), 1521 – 1528 (2016).

    Article  Google Scholar 

  14. S. F. Hassan and M. Gupta, “Effect of different types of nanosize oxide particulates on microstructural and mechanical properties of elemental Mg,” J. Mater. Sci., 41(8), 2229 – 2236 (2006).

    Article  CAS  Google Scholar 

  15. K. S. Tun, W. L. E. Wong, and Q. B. Nguyen, “Tensile and compressive responses of ceramic and metallic nanoparticle reinforced Mg composites,” Materials, No. 6, 1826 – 1839 (2013).

    Article  CAS  Google Scholar 

  16. A. Yamazaki, J. Kaneko, and M. Sugamata, “Solid state reaction in mechanical alloying of the Mg – 9% Al alloy with addition of TiO2 and ZrO2,” J. Japan Soc. Powder and Powder Metall., 48(10), 935 – 942 (2001).

    Article  CAS  Google Scholar 

  17. T. G. Feeman, “On the area of a parabolic sector,” Int. J. Mathem. Educat. Sci. Tech., 40(8), 1118 – 1121 (2009).

    Article  Google Scholar 

  18. B. M. Girish, B. M. Satish, S. Sarapure, and D. R. Somashekar & Basawaraj, “Wear behavior of magnesium alloy AZ91 hybrid composite materials,” Tribology Trans., 58(3), 481 – 489 (2015).

    Article  CAS  Google Scholar 

  19. M. K. Habibi, A. M. S. Hamouda, and M. Gupta, “Enhancing tensile and compressive strength of magnesium using ball milled Al + CNT reinforcement,” Composites Sci. Techn., 72, 290 – 298 (2012).

    Article  CAS  Google Scholar 

  20. G. F. Ç. Efe, M. Ýpek, S. Zeytin, and C. Bindal, “Some properties of Cu – MgO composites produced by powder metallurgy,” Res. Eng. Struct. Mater., 2(2), 67 – 74 (2016).

    Google Scholar 

  21. W. L. E. Wong, S. Karthik, and M. Gupta, “Development of high performance Mg – Al2O3 composites containing Al2O3 in submicron length scale using microwave assisted rapid sintering,” Mater. Sci. Techn., 21(9), 1063 – 1070 (2005).

    Article  CAS  Google Scholar 

  22. S. G. Rodriguez, B. Torres, A. Maroto, et al., “Dry sliding wear behavior of globular AZ91 magnesium alloy and AZ91/SiCp composites,” Wear, Nos. 1 – 10, 390 – 391 (2017).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatih Aydin.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 5, pp. 59 – 63, May, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aydin, F., Sun, Y. Microstructure and Wear of a Sintered Composite with a Magnesium Alloy AZ91 Matrix Reinforced with ZrO2 Particles. Met Sci Heat Treat 61, 325–329 (2019). https://doi.org/10.1007/s11041-019-00424-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-019-00424-z

Key words

Navigation