Skip to main content

About the Nature of Quasi-Cleavage in Low-Carbon Steel Embrittled with Hydrogen

Scanning electron microscopy and confocal laser scanning microscopy are used to study a fracture surface of hydrogen-charged low-carbon steel, which has been deformed in air at room temperature to 12% residual strain and then crushed in liquid nitrogen. It is shown that the quasi-cleavage facets formed during the room-temperature deformation have a strongly curved surface in contrast to the flat cleavage facets formed under the loading in liquid nitrogen. It is inferred that the quasi-cleavage facets in the hydrogen-charged steel do not form by the mechanism of cleavage in the deformed structure.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.

References

  1. 1.

    S. P. Lynch, “Hydrogen embrittlement phenomena and mechanisms,” Corros. Rev., 30, 63 – 133 (2012) (doi: https://doi.org/10.1515/corrrev-2012-0502).

    CAS  Article  Google Scholar 

  2. 2.

    I. M. Robertson, P. Sofronis, A. Nagao, et al., “Hydrogen embrittlement understood,” Metall. Mater. Trans. A, 46, 2323 – 2341 (2015) (doi: https://doi.org/10.1007/s11661-015-2836-1).

    CAS  Article  Google Scholar 

  3. 3.

    M. Koyama, H. Springer, S. V. Merzlikin, et al., “Hydrogen embrittlement associated with strain localization in a precipitation-hardened Fe – Mn – Al – C light weight austenitic steel,” Int. J. Hydrogen Energy, 39, 4634 – 4646 (2014) (doi: https://doi.org/10.1016/j.ijhydene.2013.12.171).

    CAS  Article  Google Scholar 

  4. 4.

    S. Wang, M. L. Martin, P. Sofronis, et al., “Hydrogen-induced intergranular failure of iron,” Acta Mater., 69, 275 – 282 (2014) (doi: https://doi.org/10.1016/j.actamat.2014.01.060).

    CAS  Article  Google Scholar 

  5. 5.

    L. P. Botvina, T. V. Tetyueva, and A. V. Ioffe, “Stage nature of multiple fracture of low-alloy steels in hydrogen environment,” Metalloved. Term. Obrab. Met., No. 2, 14 – 22 (1998).

  6. 6.

    T. Neeraj, R. Srinivasan, and J. Li, “Hydrogen embrittlement of ferritic steels: Observations on deformation microstructure, nanoscale dimples and failure by nanovoiding,” Acta Mater., 60, 5660 – 5171 (2012) (https://doi.org/10.1016/j.actamat.2012.06.014).

    CAS  Article  Google Scholar 

  7. 7.

    M. L. Martin, J. A. Fenske, G. S. Liu, et al., “On the formation and nature of quasi-cleavage fracture surfaces in hydrogen embrittled steels,” Acta Mater., 59, 1601 – 1606 (2011) (doi: https://doi.org/10.1016/j.actamat.2010.11.024).

    CAS  Article  Google Scholar 

  8. 8.

    D. Ya. Povolotskii and A. N. Morozov, Hydrogen and Flakes in Steel [in Russian], Metallurgizdat, Moscow (1959), 182 p.

  9. 9.

    E. Merson, A. Vinogradov, and D. L. Merson, “Application of acoustic emission method for investigation of hydrogen embrittlement mechanism in the low-carbon steel,” J. Alloys Compd., 645, 460 – 463 (2015) (doi: https://doi.org/10.1016/j.jallcom.2014.12.083).

    CAS  Article  Google Scholar 

  10. 10.

    M. R. Louthan, “Hydrogen embrittlement of metals: a primer for the failure analyst,” J. Fail. Anal. Prev., 8, 289 – 307 (2008) (doi: https://doi.org/10.1007/s11668-008-9133-x).

    Article  Google Scholar 

  11. 11.

    A. Nagao, C. D. Smith, M. Dadfarina et al., “Interpretation of hydrogen-induced fracture surface morphologies for lath martensitic steel,” Proc. Mater. Sci., 3, 1700 – 1705 (2014) (doi: https://doi.org/10.1016/j.mspro.2014.06.274).

    CAS  Article  Google Scholar 

  12. 12.

    M. L. Martin, I. M. Robertson, and P. Sofronis, “Interpreting hydrogen-induced fracture surfaces in terms of deformation processes: A new approach,” Scr. Mater., 59, 3680 – 3687 (2011) (doi: https://doi.org/10.1016/j.actamat.2011.03.002).

    CAS  Article  Google Scholar 

  13. 13.

    S. P. Lynch, “Interpreting hydrogen-induced fracture surfaces in terms of deformation processes: A new approach,” Scr. Mater., 65, 851 – 854 (2011) (doi: https://doi.org/10.1016/j.scriptamat.2011.06.016).

    CAS  Article  Google Scholar 

  14. 14.

    A. Kumar, A. J. Wilkinson, and S. G. Roberts, “Quasi-cleavage fracture planes in spheroidized A533B steel,” J. Microsc., 227, 248 – 253 (2007) (doi: https://doi.org/10.1111/j.1365-2818.2007.01808.x).

    CAS  Article  Google Scholar 

  15. 15.

    M. A. Shtremel, Fracture, Book 2 [in Russian], Izd. Dom. MISiS, Moscow (2015), 975 p.

  16. 16.

    E. Merson, A. V. Kudrya, V. A. Trachenko, et al., “Quantitative characterization of cleavage and hydrogen-assisted quasi-cleavage fracture surfaces with the use of confocal laser scanning microscopy,” Mater. Sci. Eng. A, 665, 35 – 46 (2016) (doi: https://doi.org/10.1016/j.msea.2016.04.023).

    CAS  Article  Google Scholar 

  17. 17.

    E. D. Merson and V. A. Poluyanov, “Stage nature of growth of “fish eye”-type cracks under uniaxial tension of low-carbon steel saturated with hydrogen,” in: Proc. XVI Int. Sci.-Eng. Ural Workshop of Young Metal Scientists [in Russian], Ekaterinburg (2015), pp. 343 – 346.

  18. 18.

    M. Naguma, Fundamentals of Hydrogen Embrittlement, Springer Singapore, Singapore (2016) (doi: https://doi.org/10.1007/978-981-10-0161-1).

    Book  Google Scholar 

  19. 19.

    S. P. Lynch, “Environmentally assisted cracking: Overview of evidence for an adsorption-induced localised-slip process,” Acta Metall., 36, 2639 – 2661 (1988) (https://doi.org/10.1016/0001-6160(88)90113-7).

    CAS  Article  Google Scholar 

Download references

The work has been performed with financial support of the Russian Foundation for Basic Research (Grant 17-08-01033).

Author information

Affiliations

Authors

Corresponding author

Correspondence to E. D. Merson.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 3, pp. 53 – 57, March, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Merson, E.D., Poluyanov, V.A., Merson, D.L. et al. About the Nature of Quasi-Cleavage in Low-Carbon Steel Embrittled with Hydrogen. Met Sci Heat Treat 61, 191–195 (2019). https://doi.org/10.1007/s11041-019-00399-x

Download citation

Key words

  • hydrogen embrittlement
  • confocal laser scanning microscopy
  • fractography
  • quasicleavage